Business School, Northwest Normal University, Lanzhou 730070, China.
Math Biosci Eng. 2022 Aug 16;19(11):11756-11767. doi: 10.3934/mbe.2022547.
We deal with a single-machine scheduling problem with an optional maintenance activity (denoted by $ ma $), where the actual processing time of a job is a function of its starting time and position. The optional $ ma $ means that the machine will perform a $ ma $, after $ ma $ is completed, the machine will return to the initial state. The objective is to determine an optimal job sequence and the location of the maintenance activity such that makespan is to be minimized. Based on some properties of an optimal sequence, we introduce a polynomial time algorithm to solve the problem, and the time complexity is $ O({n}^4) $, where $ {n} $ is the number of jobs.
我们处理一个具有可选维护活动(用$ ma $表示)的单机调度问题,其中作业的实际处理时间是其开始时间和位置的函数。可选的$ ma $表示机器将执行一次$ ma $,完成后,机器将回到初始状态。目标是确定最佳作业序列和维护活动的位置,以使完工时间最短。基于最优序列的一些性质,我们引入了一种多项式时间算法来解决这个问题,时间复杂度为$ O({n}^4) $,其中$ {n} $是作业数量。