Guet-McCreight Alexandre, Chameh Homeira Moradi, Mahallati Sara, Wishart Margaret, Tripathy Shreejoy J, Valiante Taufik A, Hay Etay
Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada.
Krembil Brain Institute, University Health Network, Toronto, ON M5T1M8, Canada.
Cereb Cortex. 2023 Apr 4;33(8):4360-4373. doi: 10.1093/cercor/bhac348.
Aging involves various neurobiological changes, although their effect on brain function in humans remains poorly understood. The growing availability of human neuronal and circuit data provides opportunities for uncovering age-dependent changes of brain networks and for constraining models to predict consequences on brain activity. Here we found increased sag voltage amplitude in human middle temporal gyrus layer 5 pyramidal neurons from older subjects and captured this effect in biophysical models of younger and older pyramidal neurons. We used these models to simulate detailed layer 5 microcircuits and found lower baseline firing in older pyramidal neuron microcircuits, with minimal effect on response. We then validated the predicted reduced baseline firing using extracellular multielectrode recordings from human brain slices of different ages. Our results thus report changes in human pyramidal neuron input integration properties and provide fundamental insights into the neuronal mechanisms of altered cortical excitability and resting-state activity in human aging.
衰老涉及多种神经生物学变化,尽管这些变化对人类大脑功能的影响仍知之甚少。越来越多的人类神经元和神经回路数据为揭示大脑网络的年龄依赖性变化以及为预测对大脑活动的影响而构建约束模型提供了机会。在这里,我们发现老年受试者的人类颞中回第5层锥体神经元的凹陷电压幅度增加,并在年轻和老年锥体神经元的生物物理模型中捕捉到了这种效应。我们使用这些模型来模拟详细的第5层微电路,发现老年锥体神经元微电路的基线放电较低,对反应的影响最小。然后,我们使用来自不同年龄人脑切片的细胞外多电极记录验证了预测的基线放电减少。因此,我们的结果报告了人类锥体神经元输入整合特性的变化,并为人类衰老过程中皮层兴奋性和静息状态活动改变的神经元机制提供了基本见解。