Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia.
J Neurophysiol. 2012 Jul;108(2):595-609. doi: 10.1152/jn.00859.2011. Epub 2012 Apr 11.
The activity of supragranular pyramidal neurons in the dorsolateral prefrontal cortex (DLPFC) neurons is hypothesized to be a key contributor to the cellular basis of working memory in primates. Therefore, the intrinsic membrane properties, a crucial determinant of a neuron's functional properties, are important for the role of DLPFC pyramidal neurons in working memory. The present study aimed to investigate the biophysical properties of pyramidal cells in layer 2/3 of monkey DLPFC to create an unbiased electrophysiological classification of these cells. Whole cell voltage recordings in the slice preparation were performed in 77 pyramidal cells, and 24 electrophysiological measures of their passive and active intrinsic membrane properties were analyzed. Based on the results of cluster analysis of 16 independent electrophysiological variables, 4 distinct electrophysiological classes of monkey pyramidal cells were determined. Two classes contain regular-spiking neurons with low and high excitability and constitute 52% of the pyramidal cells sampled. These subclasses of regular-spiking neurons mostly differ in their input resistance, minimum current that evoked firing, and current-to-frequency transduction properties. A third class of pyramidal cells includes low-threshold spiking cells (17%), which fire a burst of three-five spikes followed by regular firing at all suprathreshold current intensities. The last class consists of cells with an intermediate firing pattern (31%). These cells have two modes of firing response, regular spiking and bursting discharge, depending on the strength of stimulation and resting membrane potential. Our results show that diversity in the functional properties of DLPFC pyramidal cells may contribute to heterogeneous modes of information processing during working memory and other cognitive operations that engage the activity of cortical circuits in the superficial layers of the DLPFC.
外侧前额叶皮层(DLPFC)的颗粒上神经元的活动被假设是灵长类动物工作记忆的细胞基础的关键贡献者。因此,内在膜特性,神经元功能特性的关键决定因素,对于 DLPFC 锥体神经元在工作记忆中的作用很重要。本研究旨在研究猴子 DLPFC 第 2/3 层锥体细胞的生物物理特性,以对这些细胞进行无偏置的电生理分类。在切片制备中对 77 个锥体细胞进行全细胞膜电压记录,并分析其被动和主动内在膜特性的 24 个电生理测量值。基于 16 个独立电生理变量的聚类分析结果,确定了猴子锥体细胞的 4 种不同电生理类型。两种类型包含兴奋性低和高的规则放电神经元,占采样锥体细胞的 52%。这些规则放电神经元的子类主要在其输入电阻、引发放电的最小电流以及电流-频率转换特性方面有所不同。第三种类型的锥体细胞包括低阈值放电细胞(17%),它们在所有超阈值电流强度下都会发射三个到五个脉冲的爆发,然后以规则的方式放电。最后一类由具有中间放电模式的细胞组成(31%)。这些细胞有两种放电反应模式,规则放电和爆发放电,这取决于刺激的强度和静息膜电位。我们的结果表明,DLPFC 锥体细胞的功能特性的多样性可能有助于工作记忆期间的信息处理的异质模式和其他认知操作,这些操作涉及 DLPFC 浅层皮质电路的活动。