Ahmad Sajjad, Ma Ruiman, Zheng Jiawei, Gary Kwok Cheuk Kai, Zhou Qisen, Ren Zhenwei, Kim Jinwook, He Xinjun, Zhang Xiaoliang, Yu Kin Man, Choy Wallace C H
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
Department of Physics, The City University of Hong Kong, Kowloon, Hong Kong, China.
Small Methods. 2022 Oct;6(10):e2200787. doi: 10.1002/smtd.202200787. Epub 2022 Sep 20.
The inorganic hole transport layer of nickel oxide (NiO ) has shown highly efficient, low-cost, and scalable in perovskite photovoltaics. However, redox reactions at the interface between NiO and perovskites limit their commercialization. In this study, ABABr (4-(2-Aminoethyl) benzoic acid bromide) between the NiO and different perovskite layers to address the issues has been introduced. How the ABABr interacts with NiO and perovskites is experimentally and theoretically investigated. These results show that the ABABr molecule chemically reacts with the NiO via electrostatic attraction on one side, whereas on the other side, it forms a strong hydrogen bond via the NH group with perovskites layers, thus directly diminishing the redox reaction between the NiO and perovskites layers and passivating the layer surfaces. Additionally, the ABABr interface modification leads to significant improvements in perovskite film morphology, crystallization, and band alignment. The perovskites solar cells (PSCs) based on an ABABr interface modification show power conversion efficiency (PCE) improvement by over 13% and maintain over 90% of its PCE after continuous operation at maximum power point for over 500 h. The work not only contributes to the development of novel interlayers for stable PSCs but also to the understanding of how to prevent interface redox reactions.
氧化镍(NiO)无机空穴传输层在钙钛矿光伏领域已展现出高效、低成本及可扩展性。然而,NiO与钙钛矿之间界面处的氧化还原反应限制了它们的商业化进程。在本研究中,已引入ABABr(4-(2-氨基乙基)苯甲酸溴化物)置于NiO与不同钙钛矿层之间以解决这些问题。通过实验和理论研究了ABABr如何与NiO和钙钛矿相互作用。这些结果表明,ABABr分子一方面通过静电吸引与NiO发生化学反应,另一方面,它通过NH基团与钙钛矿层形成强氢键,从而直接减少了NiO与钙钛矿层之间的氧化还原反应并钝化了层表面。此外,ABABr界面修饰导致钙钛矿薄膜形态、结晶和能带排列有显著改善。基于ABABr界面修饰的钙钛矿太阳能电池(PSC)的功率转换效率(PCE)提高了超过13%,并且在最大功率点连续运行超过500小时后仍保持其PCE的90%以上。这项工作不仅有助于开发用于稳定PSC的新型中间层,还有助于理解如何防止界面氧化还原反应。