Mann Dilpreet Singh, Kwon Sung-Nam, Thakur Sakshi, Patil Pramila, Jeong Kwang-Un, Na Seok-In
Department of Flexible and Printable Electronics and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, 54896, Republic of Korea.
Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea.
Small. 2024 Jun;20(24):e2311362. doi: 10.1002/smll.202311362. Epub 2024 Jan 8.
For p-i-n perovskite solar cells (PSCs), nickel oxide (NiO) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni and hydroxyl groups in the NiO and perovskite layer leads to oxidized CHNH and reacts with PbI in the perovskite, resulting in a large number of non-radiative recombination sites. Among various transition metals, an ultra-thin zinc nitride (ZnN) layer on the NiO surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non-radiative recombination at the interface of the perovskite and NiO reduce chemically by using interface modifier ZnN to reduce hydroxyl group and defects on the surface of NiO. A thin layer of ZnN at the NiO/perovskite interface results in a high Ni/Ni ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap-passivation ability. Consequently, ZnN-modified NiO-based PSCs achieve a champion PCE of 21.61%, over the NiO-based PSCs. After ZnN modification, the PSC can improve stability under several conditions.
对于p-i-n结构的钙钛矿太阳能电池(PSC),氧化镍(NiO)空穴传输层(HTL)因其低成本、高迁移率、高透射率和稳定性而成为首选的界面层。然而,NiO与钙钛矿层中的羟基之间的氧化还原反应会导致CHNH被氧化,并与钙钛矿中的PbI发生反应,从而产生大量非辐射复合位点。在各种过渡金属中,选择在NiO表面沉积超薄氮化锌(ZnN)层,通过简单的低温溶液工艺来防止这些氧化还原反应和界面问题。通过使用界面改性剂ZnN来减少NiO表面的羟基和缺陷,从而在化学上减少钙钛矿与NiO界面处的氧化还原反应和非辐射复合。在NiO/钙钛矿界面处的一层薄薄的ZnN会导致高Ni/Ni比和显著的功函数(WF),这抑制了氧化还原反应,并与钙钛矿晶体提供了高度对齐的能级以及严格的陷阱钝化能力。因此,ZnN改性的基于NiO的PSC实现了21.61%的最佳功率转换效率(PCE),超过了基于NiO的PSC。经过ZnN改性后,PSC在多种条件下都能提高稳定性。