Yang Han, Govoni Marco, Kundu Arpan, Galli Giulia
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.
J Chem Theory Comput. 2022 Oct 11;18(10):6031-6042. doi: 10.1021/acs.jctc.2c00579. Epub 2022 Sep 20.
We present a computational protocol, based on density matrix perturbation theory, to obtain non-adiabatic, frequency-dependent electron-phonon self-energies for molecules and solids. Our approach enables the evaluation of electron-phonon interaction using hybrid functionals, for spin-polarized systems, and the computational overhead to include dynamical and non-adiabatic terms in the evaluation of electron-phonon self-energies is negligible. We discuss results for molecules, as well as pristine and defective solids.
我们提出了一种基于密度矩阵微扰理论的计算方法,用于获得分子和固体的非绝热、频率相关的电子-声子自能。我们的方法能够使用杂化泛函评估自旋极化体系中的电子-声子相互作用,并且在评估电子-声子自能时包含动态和非绝热项的计算开销可以忽略不计。我们讨论了分子以及原始和有缺陷固体的计算结果。