文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肌腱外植体的应激剥夺或肌腱细胞中 Tpm3.1 的抑制会减少 F-肌动蛋白,从而促进类似腱病的表型。

Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype.

机构信息

Departments of Biological Sciences, University of Delaware, Newark, DE 19716.

Biomedical Engineering, University of Delaware, Newark, DE 19716.

出版信息

Mol Biol Cell. 2022 Dec 1;33(14):ar141. doi: 10.1091/mbc.E22-02-0067. Epub 2022 Sep 21.


DOI:10.1091/mbc.E22-02-0067
PMID:36129771
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9727789/
Abstract

Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber-associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.

摘要

肌动蛋白是机械力与细胞表型之间的核心介质。在肌腱中,据推测机械应力剥夺通过减少丝状(F)-肌动蛋白来调节基因表达。然而,调节肌腱细胞 F-肌动蛋白的机制仍不清楚。原肌球蛋白(Tpms)是 F-肌动蛋白的主要调节物。有超过 40 种 Tpm 同工型,每种同工型都具有稳定 F-肌动蛋白亚群的独特能力。我们研究了在应激剥夺肌腱中的 F-肌动蛋白聚合,并测试了应激纤维相关 Tpm(s)稳定 F-肌动蛋白以调节细胞表型的假设。小鼠尾巴肌腱的应激剥夺下调了肌腱生成基因,上调了蛋白酶(基质金属蛋白酶-3)mRNA 水平。与 mRNA 调节同时发生的是 G/F-肌动蛋白的增加,这证实了肌腱应激剥夺导致 F-肌动蛋白减少。为了研究 F-肌动蛋白的分子调节,我们发现尾巴、跟腱和跖肌腱共表达三种同工型:Tpm1.6、3.1 和 4.2。Tpm3.1 在天然和原代肌腱细胞中与 F-肌动蛋白结合。Tpm3.1 抑制减少了 F-肌动蛋白,导致肌腱生成基因表达减少,软骨生成基因表达增加,以及小鼠和人肌腱细胞中蛋白酶表达增强。Tpm3.1 抑制引起的这些表达变化与肌腱病进展一致。进一步了解 F-肌动蛋白在肌肉骨骼细胞中的调节作用可能会导致新的治疗干预措施,以防止在疾病进展过程中细胞表型发生改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/266789de3ffd/mbc-33-ar141-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/8275c1450936/mbc-33-ar141-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/d0a1204b6abe/mbc-33-ar141-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/0f5cff6237d9/mbc-33-ar141-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/fc15e9ae2a37/mbc-33-ar141-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/837e05cd2f67/mbc-33-ar141-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/e080a1982636/mbc-33-ar141-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/1830c91756ef/mbc-33-ar141-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/266789de3ffd/mbc-33-ar141-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/8275c1450936/mbc-33-ar141-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/d0a1204b6abe/mbc-33-ar141-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/0f5cff6237d9/mbc-33-ar141-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/fc15e9ae2a37/mbc-33-ar141-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/837e05cd2f67/mbc-33-ar141-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/e080a1982636/mbc-33-ar141-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/1830c91756ef/mbc-33-ar141-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/9727789/266789de3ffd/mbc-33-ar141-g008.jpg

相似文献

[1]
Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype.

Mol Biol Cell. 2022-12-1

[2]
Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes.

Eur J Cell Biol. 2024-6

[3]
Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition.

Invest Ophthalmol Vis Sci. 2020-6-3

[4]
Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes.

bioRxiv. 2023-12-9

[5]
Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms.

Biochim Biophys Acta Proteins Proteom. 2016-9-30

[6]
The impact of tropomyosins on actin filament assembly is isoform specific.

Bioarchitecture. 2016-7-3

[7]
Myosin-1C differentially displaces tropomyosin isoforms altering their inhibition of motility.

J Biol Chem. 2024-8

[8]
Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins.

FEBS J. 2015-12-31

[9]
The application of mechanical load onto mouse tendons by magnetic restraining represses Mmp-3 expression.

BMC Res Notes. 2023-6-30

[10]
Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells.

Mol Biol Cell. 2017-9-15

引用本文的文献

[1]
Enhanced Superficial Zone Chondrocyte Expansion and Redifferentiation by Culture on Chondrocyte-Derived Decellularized Matrices.

Cartilage. 2025-8-31

[2]
The Effects of Hypothermic Storage on Passaged Chondrocyte Viability and Redifferentiation Potential.

bioRxiv. 2025-6-26

[3]
Targeting the reorganization of F-actin for cell-based implantation cartilage repair therapies.

Differentiation. 2025

[4]
Actin Polymerization Status Regulates Tenocyte Homeostasis Through Myocardin-Related Transcription Factor-A.

Cytoskeleton (Hoboken). 2024-11-27

[5]
Actin Polymerization Status Regulates Tendon Homeostasis through Myocardin-Related Transcription Factor-A.

bioRxiv. 2024-8-26

[6]
Targeting F-actin stress fibers to suppress the dedifferentiated phenotype in chondrocytes.

Eur J Cell Biol. 2024-6

[7]
Passaged Articular Chondrocytes From the Superficial Zone and Deep Zone Can Regain Zone-Specific Properties After Redifferentiation.

Am J Sports Med. 2024-3

[8]
The Actin Cytoskeleton as a Regulator of Proteoglycan 4.

Cartilage. 2024-1-6

[9]
The application of mechanical load onto mouse tendons by magnetic restraining represses Mmp-3 expression.

BMC Res Notes. 2023-6-30

[10]
Immortalized murine tenocyte cells: a novel and innovative tool for tendon research.

Sci Rep. 2023-1-28

本文引用的文献

[1]
Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz.

Proc Natl Acad Sci U S A. 2023-5-30

[2]
Effects of cyclic tensile strain and microgravity on the distribution of actin fiber and Fat1 cadherin in murine articular chondrocytes.

J Biomech. 2021-12-2

[3]
Inhibition of RhoA/MRTF-A signaling alleviates nucleus pulposus fibrosis induced by mechanical stress overload.

Connect Tissue Res. 2022-1

[4]
The role of the tendon ECM in mechanotransduction: disruption and repair following overuse.

Connect Tissue Res. 2022-1

[5]
Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis.

Proc Natl Acad Sci U S A. 2021-3-30

[6]
Stress-deprivation induces an up-regulation of versican and connexin-43 mRNA and protein synthesis and increased ADAMTS-1 production in tendon cells .

Connect Tissue Res. 2022-1

[7]
Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss.

Sci Adv. 2020-11

[8]
Single cell sequencing revealed the underlying pathogenesis of the development of osteoarthritis.

Gene. 2020-7-5

[9]
The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis.

J Cell Sci. 2020-7-1

[10]
Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition.

Invest Ophthalmol Vis Sci. 2020-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索