Departments of Biological Sciences, University of Delaware, Newark, DE 19716.
Biomedical Engineering, University of Delaware, Newark, DE 19716.
Mol Biol Cell. 2022 Dec 1;33(14):ar141. doi: 10.1091/mbc.E22-02-0067. Epub 2022 Sep 21.
Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber-associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.
肌动蛋白是机械力与细胞表型之间的核心介质。在肌腱中,据推测机械应力剥夺通过减少丝状(F)-肌动蛋白来调节基因表达。然而,调节肌腱细胞 F-肌动蛋白的机制仍不清楚。原肌球蛋白(Tpms)是 F-肌动蛋白的主要调节物。有超过 40 种 Tpm 同工型,每种同工型都具有稳定 F-肌动蛋白亚群的独特能力。我们研究了在应激剥夺肌腱中的 F-肌动蛋白聚合,并测试了应激纤维相关 Tpm(s)稳定 F-肌动蛋白以调节细胞表型的假设。小鼠尾巴肌腱的应激剥夺下调了肌腱生成基因,上调了蛋白酶(基质金属蛋白酶-3)mRNA 水平。与 mRNA 调节同时发生的是 G/F-肌动蛋白的增加,这证实了肌腱应激剥夺导致 F-肌动蛋白减少。为了研究 F-肌动蛋白的分子调节,我们发现尾巴、跟腱和跖肌腱共表达三种同工型:Tpm1.6、3.1 和 4.2。Tpm3.1 在天然和原代肌腱细胞中与 F-肌动蛋白结合。Tpm3.1 抑制减少了 F-肌动蛋白,导致肌腱生成基因表达减少,软骨生成基因表达增加,以及小鼠和人肌腱细胞中蛋白酶表达增强。Tpm3.1 抑制引起的这些表达变化与肌腱病进展一致。进一步了解 F-肌动蛋白在肌肉骨骼细胞中的调节作用可能会导致新的治疗干预措施,以防止在疾病进展过程中细胞表型发生改变。
Eur J Cell Biol. 2024-6
Invest Ophthalmol Vis Sci. 2020-6-3
Biochim Biophys Acta Proteins Proteom. 2016-9-30
Bioarchitecture. 2016-7-3
Cytoskeleton (Hoboken). 2024-11-27
Eur J Cell Biol. 2024-6
Cartilage. 2024-1-6
Proc Natl Acad Sci U S A. 2023-5-30
Connect Tissue Res. 2022-1
Invest Ophthalmol Vis Sci. 2020-6-3