Garcia Adrian E, Wang Chen Santillan, Sanderson Robert N, McDevitt Kyle M, Zhang Yunfei, Valdevit Lorenzo, Mumm Daniel R, Mohraz Ali, Ragan Regina
Department of Materials Science and Engineering, University of California Irvine CA 92697-2585 USA
Department of Physics and Astronomy, University of California Irvine CA 92697-4575 USA.
Nanoscale Adv. 2019 Sep 18;1(10):3870-3882. doi: 10.1039/c9na00358d. eCollection 2019 Oct 9.
Three-dimensional porous architectures of graphene are desirable for energy storage, catalysis, and sensing applications. Yet it has proven challenging to devise scalable methods capable of producing co-continuous architectures and well-defined, uniform pore and ligament sizes at length scales relevant to applications. This is further complicated by processing temperatures necessary for high quality graphene. Here, bicontinuous interfacially jammed emulsion gels (bijels) are formed and processed into sacrificial porous Ni scaffolds for chemical vapor deposition to produce freestanding three-dimensional turbostratic graphene (bi-3DG) monoliths with high specific surface area. Scanning electron microscopy (SEM) images show that the bi-3DG monoliths inherit the unique microstructural characteristics of their bijel parents. Processing of the Ni templates strongly influences the resultant bi-3DG structures, enabling the formation of stacked graphene flakes or fewer-layer continuous films. Despite the multilayer nature, Raman spectra exhibit no discernable defect peak and large relative intensity for the Raman 2D mode, which is a characteristic of turbostratic graphene. Moiré patterns, observed in scanning tunneling microscopy images, further confirm the presence of turbostratic graphene. Nanoindentation of macroscopic pillars reveals a Young's modulus of 30 MPa, one of the highest recorded for sp carbon in a porous structure. Overall, this work highlights the utility of a scalable self-assembly method towards porous high quality graphene constructs with tunable, uniform, and co-continuous microstructure.
石墨烯的三维多孔结构在能量存储、催化和传感应用中具有重要价值。然而,事实证明,设计出能够在与应用相关的长度尺度上制造共连续结构以及具有明确、均匀孔径和韧带尺寸的可扩展方法具有挑战性。高质量石墨烯所需的加工温度进一步加剧了这一复杂性。在此,形成了双连续界面堵塞乳液凝胶(bijels),并将其加工成用于化学气相沉积的牺牲性多孔镍支架,以制备具有高比表面积的独立式三维乱层石墨烯(bi - 3DG)整体材料。扫描电子显微镜(SEM)图像显示,bi - 3DG整体材料继承了其bijel母体独特的微观结构特征。镍模板的加工对最终的bi - 3DG结构有很大影响,能够形成堆叠的石墨烯薄片或较少层数的连续薄膜。尽管具有多层性质,但拉曼光谱中没有可辨别的缺陷峰,且拉曼2D模式具有较大的相对强度,这是乱层石墨烯的一个特征。在扫描隧道显微镜图像中观察到的莫尔条纹进一步证实了乱层石墨烯的存在。对宏观支柱的纳米压痕测试显示杨氏模量为30 MPa,这是多孔结构中sp碳记录到的最高值之一。总体而言,这项工作突出了一种可扩展的自组装方法在制备具有可调、均匀和共连续微观结构的多孔高质量石墨烯结构方面的实用性。