Razza Nicolò, Lavino Alessio D, Fadda Giulia, Lairez Didier, Impagnatiello Andrea, Marchisio Daniele, Sangermano Marco, Rizza Giancarlo
Department of Applied Science and Technology, Politecnico di Torino Torino Italy.
CSPAT UMR 7244, Université Sorbonne Paris Nord 74 rue Marcel Cachin 93017 Bobigny France.
Nanoscale Adv. 2021 Jul 8;3(17):4979-4989. doi: 10.1039/d1na00360g. eCollection 2021 Aug 25.
When a lipid membrane approaches a material/nanomaterial, nonspecific adhesion may occur. The interactions responsible for nonspecific adhesion can either preserve the membrane integrity or lead to its disruption. Despite the importance of the phenomenon, there is still a lack of clear understanding of how and why nonspecific adhesion may originate different resulting scenarios and how these interaction scenarios can be investigated. This work aims at bridging this gap by investigating the role of the interplay between cationic electrostatic and hydrophobic interactions in modulating the membrane stability during nonspecific adhesion phenomena. Here, the stability of the membrane has been studied employing anisotropic nanoprobes in zwitterionic lipid membranes with the support of coarse-grained molecular dynamics simulations to interpret the experimental observations. Lipid membrane electrical measurements and nanoscale visualization in combination with molecular dynamics simulations revealed the phenomena driving nonspecific adhesion. Any interaction with the lipidic bilayer is defect-mediated involving cationic electrostatically driven lipid extraction and hydrophobically-driven chain protrusion, whose interplay determines the existence of a thermodynamic optimum for the membrane structural integrity. These findings unlock unexplored routes to exploit nonspecific adhesion in lipid membranes. The proposed platform can act as a straightforward probing tool to locally investigate interactions between synthetic materials and lipid membranes for the design of antibacterials, antivirals, and scaffolds for tissue engineering.
当脂质膜靠近一种材料/纳米材料时,可能会发生非特异性粘附。导致非特异性粘附的相互作用既可能保持膜的完整性,也可能导致其破坏。尽管这一现象很重要,但对于非特异性粘附如何以及为何会引发不同的结果情形,以及如何研究这些相互作用情形,仍缺乏清晰的认识。这项工作旨在通过研究阳离子静电相互作用和疏水相互作用之间的相互作用在非特异性粘附现象中调节膜稳定性的作用来弥合这一差距。在这里,在两性离子脂质膜中使用各向异性纳米探针,并借助粗粒度分子动力学模拟来解释实验观察结果,对膜的稳定性进行了研究。脂质膜电学测量和纳米级可视化与分子动力学模拟相结合,揭示了驱动非特异性粘附的现象。与脂质双层的任何相互作用都是由缺陷介导的,涉及阳离子静电驱动的脂质提取和疏水驱动的链突出,它们之间的相互作用决定了膜结构完整性存在一个热力学最优值。这些发现开启了探索利用脂质膜中非特异性粘附的未开发途径。所提出的平台可以作为一种直接的探测工具,用于局部研究合成材料与脂质膜之间的相互作用,以设计抗菌剂、抗病毒剂和组织工程支架。