Department of Pharmacology, University of Illinois, Chicago College of Medicine, Chicago, IL, USA.
Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Biomaterials. 2017 Dec;147:155-168. doi: 10.1016/j.biomaterials.2017.09.020. Epub 2017 Sep 22.
The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.
下一代纳米递药系统的工程旨在创造多功能载体,使其具有改善的循环、增强的靶向性和对生物环境的响应性。研究人员已经开始超越纯粹的生物惰性系统,创造能够主动与身体生物学相互作用的纳米粒子。自然界为更有效的药物递送平台的合成提供了广泛的灵感来源。由于纳米-生物界面是纳米粒子行为和功能的关键驱动因素,因此通过赋予它们生物身份,对纳米粒子表面的修饰可以将生物特性传递给合成载体。这些表面特性的调节控制着纳米粒子与它们遇到的生物屏障的相互作用。基于这些观察结果,我们在这里概述了病毒和细胞衍生的仿生递药系统,这些系统将生物膜的固有特征与合成载体的递药能力结合在一起。我们描述了仿生递药系统的特征和性质,概括了病毒、外泌体、血小板、红细胞和白细胞的独特特征和功能。通过模拟这些生物实体,我们将学习如何更有效地与人体相互作用,并提高我们与阻碍纳米粒子治疗效果的生物屏障进行协商的能力。
Biomaterials. 2017-9-22
J Control Release. 2018-8-28
Acc Chem Res. 2019-4-12
Nat Rev Drug Discov. 2011-7-1
Trends Biotechnol. 2015-9
ACS Infect Dis. 2018-6-8
Bioconjug Chem. 2018-3-20
Eur J Pharm Biopharm. 2021-1
Mater Today Bio. 2025-8-8
Chem Soc Rev. 2025-7-17
Front Pharmacol. 2025-1-7
Nat Rev Chem. 2020-9-15
Int J Mol Sci. 2024-9-27
Signal Transduct Target Ther. 2024-8-12
Front Cardiovasc Med. 2024-6-28