Zhang Yongqian, Hudson-Smith Natalie V, Frand Seth D, Cahill Meghan S, Davis Larissa S, Feng Z Vivian, Haynes Christy L, Hamers Robert J
University of Wisconsin-Madison, Department of Chemistry, Madison, Wisconsin 53706, United States.
University of Minnesota Twin Cities, Department of Chemistry, Minneapolis, Minnesota 55455, United States.
J Am Chem Soc. 2020 Jun 17;142(24):10814-10823. doi: 10.1021/jacs.0c02737. Epub 2020 Jun 3.
While positively charged nanomaterials induce cytotoxicity in many organisms, much less is known about how the spatial distribution and presentation of molecular surface charge impact nanoparticle-biological interactions. We systematically functionalized diamond nanoparticle surfaces with five different cationic surface molecules having different molecular structures and conformations, including four small ligands and one polymer, and we then probed the molecular-level interaction between these nanoparticles and bacterial cells. MR-1 was used as a model bacterial cell system to investigate how the molecular length and conformation of cationic surface charges influence their interactions with the Gram-negative bacterial membranes. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) demonstrate the covalent modification of the nanoparticle surface with the desired cationic organic monolayers. Surprisingly, bacterial growth-based viability (GBV) and membrane damage assays both show only minimal biological impact by the NPs functionalized with short cationic ligands within the concentration range tested, yet NPs covalently linked to a cationic polymer induce strong cytotoxicity, including reduced cellular viability and significant membrane damage at the same concentration of cationic groups. Transmission electron microscopy (TEM) images of these NP-exposed bacterial cells show that NPs functionalized with cationic polymers induce significant membrane distortion and the production of outer membrane vesicle-like features, while NPs bearing short cationic ligands only exhibit weak membrane association. Our results demonstrate that the spatial distribution of molecular charge plays a key role in controlling the interaction of cationic nanoparticles with bacterial cell membranes and the subsequent biological impact. Nanoparticles functionalized with ligands having different lengths and conformations can have large differences in interactions even while having nearly identical zeta potentials. While the zeta potential is a convenient and commonly used measure of nanoparticle charge, it does not capture essential differences in molecular-level nanoparticle properties that control their biological impact.
虽然带正电荷的纳米材料在许多生物体中会诱导细胞毒性,但关于分子表面电荷的空间分布和呈现方式如何影响纳米颗粒与生物的相互作用,我们所知甚少。我们用五种具有不同分子结构和构象的不同阳离子表面分子(包括四种小分子配体和一种聚合物)对金刚石纳米颗粒表面进行了系统功能化,然后探究了这些纳米颗粒与细菌细胞之间的分子水平相互作用。MR-1被用作模型细菌细胞系统,以研究阳离子表面电荷的分子长度和构象如何影响它们与革兰氏阴性细菌膜的相互作用。核磁共振(NMR)和X射线光电子能谱(XPS)证明了纳米颗粒表面与所需阳离子有机单层的共价修饰。令人惊讶的是,基于细菌生长的活力(GBV)和膜损伤测定均表明,在所测试的浓度范围内,用短阳离子配体功能化的纳米颗粒对生物的影响极小,然而,与阳离子聚合物共价连接的纳米颗粒在相同阳离子基团浓度下会诱导强烈的细胞毒性,包括细胞活力降低和显著的膜损伤。这些暴露于纳米颗粒的细菌细胞的透射电子显微镜(TEM)图像显示,用阳离子聚合物功能化的纳米颗粒会诱导显著的膜变形和外膜囊泡样特征的产生,而带有短阳离子配体的纳米颗粒仅表现出较弱的膜结合。我们的结果表明,分子电荷的空间分布在控制阳离子纳米颗粒与细菌细胞膜的相互作用以及随后的生物影响方面起着关键作用。即使具有几乎相同的zeta电位,用具有不同长度和构象的配体功能化的纳米颗粒在相互作用上也可能有很大差异。虽然zeta电位是一种方便且常用的纳米颗粒电荷测量方法,但它并未捕捉到控制其生物影响的分子水平纳米颗粒性质的本质差异。