Alsudir Samar A, Fardous Roa S, Alsoughayer Shahla, Almalik Abdulaziz M, Alsharaeh Edreese H, Alhasan Ali H
National Center for Pharmaceutical Technology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology (KACST) P. O. Box 6086 Riyadh 11461 Saudi Arabia.
KACST-BWH/Harvard Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST) P. O. Box 6086 Riyadh 11461 Saudi Arabia.
Nanoscale Adv. 2022 Jan 31;4(5):1336-1344. doi: 10.1039/d1na00769f. eCollection 2022 Mar 1.
Oxidative chemical etching of metal nanoparticles (NPs) to produce holey graphene (hG) suffers from the presence of aggregated NPs on the graphene surface triggering heterogeneous etching rates and thereby producing irregular sized holes. To encounter such a challenge, we investigated the use of scanning probe block co-polymer lithography (SPBCL) to fabricate precisely positioned silver nanoparticles (AgNPs) on graphene surfaces with exquisite control over the NP size to prevent their aggregation and consequently produce uniformly distributed holes after oxidative chemical etching. SPBCL experiments were carried out printing an ink suspension consisting of poly(ethylene oxide--2-vinylpyridine) and silver nitrate on a graphene surface in a selected pattern under controlled environmental and instrumental parameters followed by thermal annealing in a gaseous environment to fabricate AgNPs. Scanning electron microscopy revealed the uniform size distribution of AgNPs on the graphene surface with minimal to no aggregation. Four main sizes of AgNPs were obtained (37 ± 3, 45 ± 3, 54 ± 2, and 64 ± 3 nm) controlling the printing force, -piezo extension, and dwell time. Energy dispersive X-ray spectroscopy analysis validated the existence of elemental Ag on the graphene surface. Subsequent chemical etching of AgNPs using nitric acid (HNO) with the aid of sonication and mechanical agitation produced holes of uniform size distribution generating hG. The obtained / ratios ≤ 0.96 measured by Raman spectroscopy were lower than those commonly reported for GO ( / > 1), indicating the removal of more defective C atoms during the etching process to produce hG while preserving the remaining C atoms in ordered or crystalline structures. Indeed, SPBCL could be utilized to fabricate uniformly distributed AgNPs of controlled sizes on graphene surfaces to ultimately produce hG of uniform hole size distribution.
通过氧化化学蚀刻金属纳米颗粒(NPs)来制备多孔石墨烯(hG)时,石墨烯表面存在聚集的NPs会导致蚀刻速率不均匀,从而产生尺寸不规则的孔洞。为应对这一挑战,我们研究了使用扫描探针嵌段共聚物光刻技术(SPBCL)在石墨烯表面精确制备定位银纳米颗粒(AgNPs),并对NP尺寸进行精确控制以防止其聚集,进而在氧化化学蚀刻后产生均匀分布的孔洞。SPBCL实验通过在受控的环境和仪器参数下,以选定的图案在石墨烯表面印刷由聚(环氧乙烷-2-乙烯基吡啶)和硝酸银组成的油墨悬浮液,随后在气态环境中进行热退火来制备AgNPs。扫描电子显微镜显示,AgNPs在石墨烯表面具有均匀的尺寸分布,聚集极少甚至没有聚集。通过控制印刷力、压电延伸和停留时间,获得了四种主要尺寸的AgNPs(37±3、45±3、54±2和64±3nm)。能量色散X射线光谱分析证实了石墨烯表面存在元素Ag。随后,借助超声处理和机械搅拌,使用硝酸(HNO)对AgNPs进行化学蚀刻,产生了尺寸分布均匀的孔洞,生成了hG。通过拉曼光谱测量得到的/比值≤0.96,低于通常报道的氧化石墨烯(/>1)的值,这表明在蚀刻过程中去除了更多有缺陷的C原子以生成hG,同时将剩余的C原子保留在有序或晶体结构中。实际上,SPBCL可用于在石墨烯表面制备尺寸可控且分布均匀的AgNPs,最终生产出孔洞尺寸分布均匀的hG。