Catalan Institute of Nanoscience and Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Science. 2018 Apr 13;360(6385):199-203. doi: 10.1126/science.aar2009.
Nanosize pores can turn semimetallic graphene into a semiconductor and, from being impermeable, into the most efficient molecular-sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the 1-nanometer range. The size, density, morphology, and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our electronic characterization further reveals a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ∼1 electron volt coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species.
纳米尺寸的孔可以将半金属石墨烯转变为半导体,并使石墨烯由不可渗透变为最有效的分子筛膜。然而,要将孔径缩小到纳米级,同时满足应用所施加的严格结构限制,这对于目前的自上而下策略来说是一个巨大的挑战。在这里,我们报告了一种自下而上的方法来合成纳米多孔石墨烯,该石墨烯由通过薄带分隔的有序排列的孔组成,其尺寸可调节至 1 纳米。通过分子前体的设计,可以以原子精度控制孔的大小、密度、形态和化学组成。我们的电子特性进一步揭示了一种具有高度各向异性的电子结构,其中具有约 1 电子伏特能隙的正交一维电子带与受限的孔态共存,使纳米多孔石墨烯成为一种多功能半导体,可同时对分子物种进行筛分和电感应。