Suppr超能文献

用于发光太阳能聚光器的宽带非对称光传输接口。

Broadband asymmetric light transmission interfaces for luminescent solar concentrators.

作者信息

Oliveto Vincent, Borca-Tasciuc Diana-Andra

机构信息

Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute Troy NY USA

出版信息

Nanoscale Adv. 2021 May 3;3(12):3627-3633. doi: 10.1039/d0na00946f. eCollection 2021 Jun 15.

Abstract

Luminescent solar concentrators (LSCs) are actively researched to be incorporated into multi-functional building envelope systems. They consist of a plastic matrix with absorbing-emitting media, which guides and concentrates light to edges where solar cells are located. A main drawback of LSCs is escape cone losses at the surface intercepting light. This study investigates trapezoidal nanostructures for creating an interface that enables asymmetric light transmission and reduces these losses. The study employs alumina nanostructures on a PMMA substrate, materials of relevance to LSC applications. The geometry of nanostructures was optimized to maximize asymmetry in the 700-1100 nm wavelength interval, which corresponds to the range best utilized by silicon solar cells. The multiphysics software COMSOL was utilized to simulate forward (air to PMMA) and backward (PMMA to air) transmission. Spectral transmissivity was calculated for this wavelength interval for a variety of incident polar and azimuthal angles. The largest difference between forward and backward light transmission was found at 720 nm, as designed. The forward spectral transmissivity for all polar angles considered was found to be approximately 77% in the 700-1100 nm range at an azimuth angle of zero. The backward spectral directional transmissivity in this range was approximately 37%, resulting in a 40% difference. The difference for the entire wavelength range of 400-1200 nm was approximately 37%. Similar results were obtained when the azimuth angle was varied. All these show that the incorporation of nanostructured interfaces can effectively reduce optical losses in LSCs, which will help increase their efficiency. This will make LSCs a more viable solution for use in zero or net-zero energy buildings.

摘要

发光太阳能聚光器(LSCs)正在被积极研究,以便纳入多功能建筑围护系统。它们由带有吸收 - 发射介质的塑料基质组成,该基质将光引导并聚集到位于边缘的太阳能电池处。LSCs的一个主要缺点是在光线入射表面的逸出锥损失。本研究调查了梯形纳米结构,以创建一个能够实现不对称光传输并减少这些损失的界面。该研究采用了聚甲基丙烯酸甲酯(PMMA)基板上的氧化铝纳米结构,这些材料与LSCs应用相关。纳米结构的几何形状经过优化,以在700 - 1100纳米波长区间内实现最大不对称性,该区间对应于硅太阳能电池最能有效利用的范围。使用多物理场软件COMSOL模拟正向(空气到PMMA)和反向(PMMA到空气)传输。针对各种入射极角和方位角,计算了该波长区间的光谱透射率。如设计的那样,在720纳米处发现正向和反向光传输之间的最大差异。在方位角为零时,在700 - 1100纳米范围内,所有考虑的极角的正向光谱透射率约为77%。该范围内的反向光谱方向透射率约为37%,导致40%的差异。在400 - 1200纳米的整个波长范围内,差异约为37%。当改变方位角时,也获得了类似的结果。所有这些表明,纳入纳米结构界面可以有效降低LSCs中的光学损失,这将有助于提高其效率。这将使LSCs成为在零能耗或净零能耗建筑中更可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dba/9419764/dd68412ee951/d0na00946f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验