Fimbres-Romero Manuel de J, Flores-Pacheco Álvaro, Álvarez-Ramos Mario E, Lopez-Delgado Rosendo
Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, México.
Investigadores por México-CONAHCYT, CONAHCYT, Ciudad de México CP 03940, México.
ACS Omega. 2024 Jun 20;9(26):28008-28017. doi: 10.1021/acsomega.4c00772. eCollection 2024 Jul 2.
Scientific interest in luminescent solar concentrators (LSCs) has reemerged mainly due to the application of semiconductor quantum dots (QDs) as highly efficient luminophores. Recently, LSCs have become attractive proposals for Building-Integrated photovoltaics (BIPV) since they could help conventional photovoltaics to improve sunlight harvesting and reduce production costs. However, most of the modern LSCs rely on heavy-metal QDs which are highly toxic and may cause environmental concerns. Additionally, their absorption spectra give them a characteristic color limiting their potential application in BIPV. Herein, we fabricated transparent and colorless LSCs by embedding nontoxic and cost-effective zinc oxide quantum dots (ZnO QDs) in a PMMA polymer matrix (ZnO-LSC), preserving the QD optical properties and PMMA transparency. The synthesized colloidal ZnO QDs have an average size of 5.5 nm, a hexagonal wurtzite crystalline structure, a broad yellow photoluminescent signal under ultraviolet excitation, and are highly visibly transparent at the employed concentrations (>95% in wavelengths above 400 nm). The optical characterization of the fabricated ZnO-LSCs showed a good visible transparency of 80.3% average visible transmission (AVT), with an LSC concentration factor () of 1.02. An optimal device (ZnO-LSC-O) could reach a value of 2.66 with the combination of optical properties of colloidal ZnO QDs and PMMA. Finally, simulations of the performance of silicon solar cells coupled to the fabricated and optimal LSCs under standard AM 1.5G illumination were performed employing the software COMSOL Multiphysics. The fabricated ZnO-LSC achieved a simulated maximum power conversion efficiency (PCE) of 3.80%, while the optimal ZnO-LSC-O reached 5.45%. Also, the ZnO-LSC generated a maximum power of 15.02 mW and the ZnO-LSC-O generated 40.33 mW, employing the same active area as the simulated solar cell directly illuminated, which generated 14.39 mW. These results indicate that the ZnO QD-based LSCs may be useful as transparent photovoltaic windows for BIPV applications.
对发光太阳能聚光器(LSC)的科学兴趣再度兴起,主要是由于半导体量子点(QD)作为高效发光体的应用。最近,LSC已成为建筑一体化光伏(BIPV)的有吸引力的方案,因为它们可以帮助传统光伏提高阳光收集效率并降低生产成本。然而,大多数现代LSC依赖于重金属量子点,这些量子点毒性很强,可能会引起环境问题。此外,它们的吸收光谱赋予它们一种特征颜色,限制了它们在BIPV中的潜在应用。在此,我们通过将无毒且经济高效的氧化锌量子点(ZnO QD)嵌入聚甲基丙烯酸甲酯(PMMA)聚合物基质(ZnO-LSC)中来制备透明无色的LSC,同时保留量子点的光学性质和PMMA的透明度。合成的胶体ZnO QD平均尺寸为5.5 nm,具有六方纤锌矿晶体结构,在紫外激发下有宽的黄色光致发光信号,并且在所使用的浓度下具有很高的可见光透明度(在波长高于400 nm时>95%)。所制备的ZnO-LSC的光学表征显示出良好的可见光透明度,平均可见光透过率(AVT)为80.3%,LSC浓度因子()为1.02。结合胶体ZnO QD和PMMA的光学性质,优化后的器件(ZnO-LSC-O)的 值可达2.66。最后,使用COMSOL Multiphysics软件对与所制备的和优化后的LSC耦合的硅太阳能电池在标准AM 1.5G光照下的性能进行了模拟。所制备的ZnO-LSC实现了模拟最大功率转换效率(PCE)为3.80%,而优化后的ZnO-LSC-O达到了5.45%。此外,使用与直接受光照的模拟太阳能电池相同的有效面积,ZnO-LSC产生的最大功率为15.02 mW,ZnO-LSC-O产生的最大功率为40.33 mW,直接受光照的模拟太阳能电池产生的功率为14.39 mW。这些结果表明,基于ZnO QD的LSC可能作为BIPV应用的透明光伏窗是有用的。