Suppr超能文献

基于聚乙烯吡咯烷酮/N掺杂碳量子点纳米复合材料的用于神经形态计算的柔性透明忆阻突触

Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing.

作者信息

Zeng Tao, Yang Zhi, Liang Jiabing, Lin Ya, Cheng Yankun, Hu Xiaochi, Zhao Xiaoning, Wang Zhongqiang, Xu Haiyang, Liu Yichun

机构信息

Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China

出版信息

Nanoscale Adv. 2021 Mar 29;3(9):2623-2631. doi: 10.1039/d1na00152c. eCollection 2021 May 4.

Abstract

Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating the NCQD doping concentration is reported. Kelvin probe force microscopy showed that the trapping/detrapping of space charge can account for the memristive mechanism of the device. Diverse synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), spike-timing-dependent plasticity (STDP), and the transition from short-term plasticity (STP) to long-term plasticity (LTP), are emulated, enabling the PVP-NCQD hybrid system to be a valuable candidate for the design of novel artificial neural architectures. In addition, the synaptic device showed excellent flexibility against mechanical strain after repeated bending tests. This work provides a new approach to develop flexible and transparent organic artificial synapses for future wearable neuromorphic computing systems.

摘要

忆阻器件被广泛认为是神经形态计算很有前景的硬件实现方式。在此,报道了一种基于聚乙烯吡咯烷酮(PVP)/N掺杂碳量子点(NCQD)纳米复合材料的柔性透明忆阻突触,该材料通过调节NCQD掺杂浓度制成。开尔文探针力显微镜显示,空间电荷的俘获/去俘获可以解释该器件的忆阻机制。该忆阻突触模拟了多种突触功能,包括兴奋性突触后电流(EPSC)、双脉冲易化(PPF)、脉冲时间依赖可塑性(STDP)以及从短期可塑性(STP)到长期可塑性(LTP)的转变,使得PVP-NCQD混合系统成为设计新型人工神经架构的一个有价值的候选材料。此外,经过反复弯曲测试后,该突触器件在机械应变方面表现出优异的柔韧性。这项工作为未来可穿戴神经形态计算系统开发柔性透明有机人工突触提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a282/9419774/69384c527e68/d1na00152c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验