González Daniel, Lema-Saavedra Anxo, Espinosa Sara, Martínez-Núñez Emilio, Fernández-Ramos Antonio, Canosa André, Ballesteros Bernabé, Jiménez Elena
Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1b, 13071, Ciudad Real, Spain.
Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain.
Phys Chem Chem Phys. 2022 Oct 5;24(38):23593-23601. doi: 10.1039/d2cp03414j.
Nitrogen-bearing molecules, like methylamine (CHNH), can be the building blocks of amino acids in the interstellar medium (ISM). At the ultralow temperatures of the ISM, it is important to know its gas-phase reactivity towards interstellar radicals and the products formed. In this work, the kinetics of the OH + CHNH reaction was experimentally and theoretically investigated at low- and high-pressure limits (LPL and HPL) between 10 and 1000 K. Moreover, the CHNH and CHNH yields were computed in the same temperature range for both pressure regimes. A pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus was employed to determine the rate coefficient, (), in the 11.7-177.5 K range. A drastic increase of () when the temperature is lowered was observed in agreement with theoretical calculations, evaluated by the competitive canonical unified statistical (CCUS) theory, below 300 K in the LPL regime. The same trend was observed in the HPL regime below 350 K, but the theoretical () values were higher than the experimental ones. Above 200 K, the calculated rate coefficients are improved with respect to previous computational studies and are in excellent agreement with the experimental literature data. In the LPL, the formation of CHNH becomes largely dominant below 100 K. Conversely, in the HPL regime, CHNH is the only product below 100 K, whereas CHNH becomes dominant at 298 K with a branching ratio similar to the one found in the LPL regime (≈70%). At > 300 K, both reaction channels are competitive independently of the pressure regime.
含氮分子,如甲胺(CH₃NH₂),可以成为星际介质(ISM)中氨基酸的组成部分。在星际介质的超低温条件下,了解其对星际自由基的气相反应性以及形成的产物非常重要。在这项工作中,对OH + CH₃NH₂反应在10至1000 K的低压和高压极限(LPL和HPL)下进行了实验和理论研究。此外,还计算了两种压力条件下在相同温度范围内的CH₃NH₂和CH₃NH产率。采用脉冲CRESU(均匀超音速流中反应动力学的法语缩写)装置来测定11.7 - 177.5 K范围内的速率系数k(T)。当温度降低时,观察到k(T)急剧增加,这与通过竞争正则统一统计(CCUS)理论在LPL条件下低于300 K时的理论计算结果一致。在HPL条件下低于350 K时也观察到了相同的趋势,但理论k(T)值高于实验值。在200 K以上,计算得到的速率系数相对于先前的计算研究有所改进,并且与实验文献数据非常吻合。在LPL条件下,低于100 K时CH₃NH₂的形成在很大程度上占主导地位。相反,在HPL条件下,低于100 K时CH₃NH是唯一的产物,而在298 K时CH₃NH₂占主导地位,其分支比与在LPL条件下发现的相似(≈70%)。在T > 300 K时,两个反应通道在任何压力条件下都是竞争的。