Jiménez E, Ballesteros B, Canosa A, Townsend T M, Maigler F J, Napal V, Rowe B R, Albaladejo J
Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain.
Département de Physique Moléculaire, Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
Rev Sci Instrum. 2015 Apr;86(4):045108. doi: 10.1063/1.4918529.
A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (k(OH)) for the reaction under investigation was then obtained and compared with the only available data at this temperature.
本文详细介绍了一种新型脉冲超音速均匀气体膨胀系统,并通过将CRESU(法语“Cinétique de Réaction en Ecoulement Supersonique Uniforme”的首字母缩写,意为均匀超音速流中的反应动力学)技术应用于OH自由基与1-丁烯在约23 K和0.63毫巴氦气(载气)条件下的气相反应,对该装置进行了实验验证。载气流量中OH前驱体和1-丁烯的混合比可忽略不计,通过一个拉瓦尔型(缩放型)收敛-发散喷嘴从高压储存器(337毫巴)膨胀至低压区域(0.63毫巴)。该实验装置的新颖之处在于,均匀超音速流通过一个带有两个对称孔口的聚四氟乙烯涂层气动斩波器实现脉冲化。在这些操作条件下,设计的拉瓦尔喷嘴在气体射流中实现了(22.4 ± 1.4) K的温度。还通过空气动力学和光谱学方法对脉冲均匀超音速流内的温度和总气体密度进行了空间表征。与连续CRESU系统相比,该技术的气体消耗量大幅降低。通过脉冲激光光解/激光诱导荧光技术研究了OH + 1-丁烯反应的动力学。圆盘的转速在时间上与光解激光和探测激光的出射同步。然后获得了所研究反应的速率系数(k(OH)),并与该温度下仅有的可用数据进行了比较。