Ocaña A J, Jiménez E, Ballesteros B, Canosa A, Antiñolo M, Albaladejo J, Agúndez M, Cernicharo J, Zanchet A, Del Mazo P, Roncero O, Aguado A
Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain.
Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain.
Astrophys J. 2017 Nov 20;850(1). doi: 10.3847/1538-4357/aa93d9. Epub 2017 Nov 14.
Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients () of the gas-phase OH+HCO reaction between 22 and 107 K. values greatly increase from 2.1×10 cm s at 107 K to 1.2×10 cm s at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+HCO reaction. In order to revisit the chemistry of HCO in cold dense clouds, is reasonably extrapolated from the experimental results at 10K (2.6×10 cm s). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 10-10 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.
超低温下中性-中性气相反应的化学动力学是一个引人入胜的研究课题,对星际介质(T∼10 - 100K)中复杂有机分子的化学性质具有重要意义。目前关于T<200 K时这类反应的动力学信息稀缺。在这项工作中,我们使用CRESU(即均匀超音速流中的反应动力学)技术首次测量了22至107 K之间气相OH + HCO反应的速率系数()。速率系数值从107 K时的2.1×10 cm³ s⁻¹大幅增加到22 K时的1.2×10 cm³ s⁻¹。这也通过使用新开发的全维势能面进行的碰撞能量低至0.1 meV的准经典轨迹(QCT)得到证实,该势能面能产生高精度势能并包括长程偶极-偶极相互作用。QCT计算表明,在低温下,HCO是OH + HCO反应的唯一产物。为了重新审视冷致密云中HCO的化学性质,速率系数从10K(2.6×10 cm³ s⁻¹)时的实验结果合理外推。对于10⁵ - 10⁶年的演化时间,模拟的HCO丰度与冷暗云中的观测结果一致。文中介绍了HCO的不同产生源,并讨论了化学网络中的不确定性。预计该反应在恒星前身核的化学过程中是一个竞争过程。目前的反应表明占HCO总产生率的百分之几。还对光解离区域和弥漫云环境的扩展进行了评论。