Goddard J P, Lowdon M
Eur J Biochem. 1978 Sep 1;89(2):531-41. doi: 10.1111/j.1432-1033.1978.tb12558.x.
Escherichia coli tRNAPhe was modified by 3 M sodium bisulphite pH 6.0 for 24 h in the temperature range 25 degrees C (x 5 degrees C) to 55 degrees C and in the absence of added magnesium ions. The sites and extents of conversion of cytidines to uridine occurring at each temperature were determined by fingerprinting. The new sites of cytidine modification found at higher reaction temperatures were assumed to arise from breakage of secondary and tertiary structure hydrogen bonds involving cytidine residues. From these data, we conclude that hydrogen bonds within the 'complex core' of the tRNA (including the base pairs G-10 . C-25, C-11 . G-24 and C-13 . G-21 within the dihydrouridine stem and the tertiary structure base pair G-15 . C-48 melt at a lower temperature than the tertiary structure hydrogen bonds between G-19 in the dihydrouridine loop and C-56 in the TpsiC loop.
在无添加镁离子的情况下,将大肠杆菌苯丙氨酸转运核糖核酸(Escherichia coli tRNAPhe)于25℃(每隔5℃)至55℃的温度范围内,用pH 6.0的3 M亚硫酸氢钠处理24小时。通过指纹图谱法确定了在每个温度下胞嘧啶转化为尿苷的位点和程度。较高反应温度下发现的胞嘧啶修饰新位点被认为是由涉及胞嘧啶残基的二级和三级结构氢键断裂引起的。根据这些数据,我们得出结论,转运核糖核酸“复合核心”内的氢键(包括二氢尿嘧啶茎内的碱基对G-10·C-25、C-11·G-24和C-13·G-21以及三级结构碱基对G-15·C-48)在比二氢尿嘧啶环中的G-19与TψC环中的C-56之间的三级结构氢键更低的温度下熔化。