Suppr超能文献

生长抑素受体正电子发射断层扫描对脑膜瘤靶区勾画的观察者间变异性的影响以及在放射肿瘤学中使用基于阈值分割的可能性。

Impact of SSTR PET on Inter-Observer Variability of Target Delineation of Meningioma and the Possibility of Using Threshold-Based Segmentations in Radiation Oncology.

作者信息

Kriwanek Florian, Ulbrich Leo, Lechner Wolfgang, Lütgendorf-Caucig Carola, Konrad Stefan, Waldstein Cora, Herrmann Harald, Georg Dietmar, Widder Joachim, Traub-Weidinger Tatjana, Rausch Ivo

机构信息

Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.

Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria.

出版信息

Cancers (Basel). 2022 Sep 13;14(18):4435. doi: 10.3390/cancers14184435.

Abstract

Aim: The aim of this study was to assess the effects of including somatostatin receptor agonist (SSTR) PET imaging in meningioma radiotherapy planning by means of changes in inter-observer variability (IOV). Further, the possibility of using threshold-based delineation approaches for semiautomatic tumor volume definition was assessed. Patients and Methods: Sixteen patients with meningioma undergoing fractionated radiotherapy were delineated by five radiation oncologists. IOV was calculated by comparing each delineation to a consensus delineation, based on the simultaneous truth and performance level estimation (STAPLE) algorithm. The consensus delineation was used to adapt a threshold-based delineation, based on a maximization of the mean Dice coefficient. To test the threshold-based approach, seven patients with SSTR-positive meningioma were additionally evaluated as a validation group. Results: The average Dice coefficients for delineations based on MRI alone was 0.84 ± 0.12. For delineation based on MRI + PET, a significantly higher dice coefficient of 0.87 ± 0.08 was found (p < 0.001). The Hausdorff distance decreased from 10.96 ± 11.98 mm to 8.83 ± 12.21 mm (p < 0.001) when adding PET for the lesion delineation. The best threshold value for a threshold-based delineation was found to be 14.0% of the SUVmax, with an average Dice coefficient of 0.50 ± 0.19 compared to the consensus delineation. In the validation cohort, a Dice coefficient of 0.56 ± 0.29 and a Hausdorff coefficient of 27.15 ± 21.54 mm were found for the threshold-based approach. Conclusions: SSTR-PET added to standard imaging with CT and MRI reduces the IOV in radiotherapy planning for patients with meningioma. When using a threshold-based approach for PET-based delineation of meningioma, a relatively low threshold of 14.0% of the SUVmax was found to provide the best agreement with a consensus delineation.

摘要

目的

本研究旨在通过观察观察者间变异性(IOV)的变化,评估在脑膜瘤放射治疗计划中纳入生长抑素受体激动剂(SSTR)PET成像的效果。此外,还评估了使用基于阈值的划定方法进行半自动肿瘤体积定义的可能性。

患者与方法

5名放射肿瘤学家对16例接受分次放射治疗的脑膜瘤患者进行了划定。基于同时真相与性能水平估计(STAPLE)算法,通过将每个划定与共识划定进行比较来计算IOV。基于平均Dice系数最大化,使用共识划定来调整基于阈值的划定。为了测试基于阈值的方法,另外7例SSTR阳性脑膜瘤患者作为验证组进行了评估。

结果

仅基于MRI的划定的平均Dice系数为0.84±0.12。基于MRI + PET的划定,发现Dice系数显著更高,为0.87±0.08(p < 0.001)。在病变划定中添加PET时,豪斯多夫距离从10.96±11.98毫米降至8.83±12.21毫米(p < 0.001)。发现基于阈值的划定的最佳阈值为SUVmax的14.0%,与共识划定相比,平均Dice系数为0.50±0.19。在验证队列中,基于阈值的方法的Dice系数为0.56±0.29,豪斯多夫系数为27.15±21.54毫米。

结论

在CT和MRI的标准成像中加入SSTR-PET可降低脑膜瘤患者放射治疗计划中的IOV。在使用基于阈值的方法对基于PET的脑膜瘤进行划定时,发现相对较低的阈值SUVmax的14.0%与共识划定的一致性最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/230e/9497299/b0daaad18ffb/cancers-14-04435-g001.jpg

相似文献

2
Evaluating diffusion-weighted magnetic resonance imaging for target volume delineation in head and neck radiotherapy.
J Med Imaging Radiat Oncol. 2019 Jun;63(3):399-407. doi: 10.1111/1754-9485.12866. Epub 2019 Feb 28.
3
Variability of gross tumour volume delineation: MRI and CT based tumour and lymph node delineation for lung radiotherapy.
Radiother Oncol. 2022 Feb;167:292-299. doi: 10.1016/j.radonc.2021.11.036. Epub 2021 Dec 8.
5
Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation.
Acta Oncol. 2021 Nov;60(11):1399-1406. doi: 10.1080/0284186X.2021.1949034. Epub 2021 Jul 15.
6
The trends and significance of SSTR PET/CT added to MRI in follow-up imaging of low-grade meningioma treated with fractionated proton therapy.
Strahlenther Onkol. 2023 Apr;199(4):396-403. doi: 10.1007/s00066-022-02010-4. Epub 2022 Oct 19.
8
Inter-observer variability in target delineation increases during adaptive treatment of head-and-neck and lung cancer.
Acta Oncol. 2019 Oct;58(10):1378-1385. doi: 10.1080/0284186X.2019.1629017. Epub 2019 Jul 4.
9
Prostate cancer GTV delineation with biparametric MRI and Ga-PSMA-PET: comparison of expert contours and semi-automated methods.
Br J Radiol. 2021 Mar 1;94(1119):20201174. doi: 10.1259/bjr.20201174. Epub 2021 Jan 28.

引用本文的文献

1
Validation of SUV thresholds in [¹⁸F]SiTATE PET/CT for accurate meningioma segmentation.
Eur J Nucl Med Mol Imaging. 2025 Jul 23. doi: 10.1007/s00259-025-07476-9.
6
In Regard to Trotter et al.
Adv Radiat Oncol. 2024 Feb 15;9(2):101410. doi: 10.1016/j.adro.2023.101410. eCollection 2024 Feb.
7
Postoperative [Ga]Ga-DOTA-TATE PET/CT imaging is prognostic for progression-free survival in meningioma WHO grade 1.
Eur J Nucl Med Mol Imaging. 2023 Dec;51(1):206-217. doi: 10.1007/s00259-023-06400-3. Epub 2023 Aug 29.

本文引用的文献

1
Ga-DOTATATE PET-Based Radiation Contouring Creates More Precise Radiation Volumes for Patients With Meningioma.
Int J Radiat Oncol Biol Phys. 2022 Jul 15;113(4):859-865. doi: 10.1016/j.ijrobp.2022.04.009. Epub 2022 Apr 20.
2
The Value of SSTR2 Receptor-Targeted PET/CT in Proton Irradiation of Grade I Meningioma.
Cancers (Basel). 2021 Sep 20;13(18):4707. doi: 10.3390/cancers13184707.
5
Delineation of lung cancer with FDG PET/CT during radiation therapy.
Radiat Oncol. 2018 Nov 12;13(1):219. doi: 10.1186/s13014-018-1163-2.
6
Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study.
PLoS One. 2018 Apr 13;13(4):e0195798. doi: 10.1371/journal.pone.0195798. eCollection 2018.
7
Improved Detection of Transosseous Meningiomas Using Ga-DOTATATE PET/CT Compared with Contrast-Enhanced MRI.
J Nucl Med. 2017 Oct;58(10):1580-1587. doi: 10.2967/jnumed.117.191932. Epub 2017 Apr 27.
9
EANO guidelines for the diagnosis and treatment of meningiomas.
Lancet Oncol. 2016 Sep;17(9):e383-91. doi: 10.1016/S1470-2045(16)30321-7. Epub 2016 Aug 30.
10
A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology.
J Med Imaging Radiat Oncol. 2016 Jun;60(3):393-406. doi: 10.1111/1754-9485.12462. Epub 2016 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验