Wu Fengbin, Zhang Junxing, Li Shaobo, Lv Dongchao, Li Menghan
State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China.
Entropy (Basel). 2022 Aug 29;24(9):1205. doi: 10.3390/e24091205.
Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning (ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and ML during the population initialization and generation jumping period to balance exploration and exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters setting and intrinsic parameters tuning phase, is introduced to improve convergence performance. Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized simultaneously. The comparative experimental results show that BROMLDE has higher global optimization capability and convergence speed on most functions and engineering problems.
数值优化一直是各种工程应用中的热门研究课题,其中差分进化(DE)是应用最广泛的方法之一。然而,在处理复杂的数值优化问题时,很难选择合适的控制参数,也难以避免陷入局部最优和收敛性差的问题。为了解决这些问题,提出了一种结合伯恩斯坦算子和折射对立互学习(ROML)的改进差分进化算法(BROMLDE),该算法可以减少参数选择,收敛更快,并避免陷入局部最优。首先,一种新的ROML策略将互学习(ML)和折射对立学习(ROL)相结合,在种群初始化和生成跳跃阶段实现ROL和ML之间的随机切换,以平衡探索和利用。同时,构建了一个动态调整因子,以提高算法跳出局部最优的能力。其次,引入了一种无需参数设置和固有参数调整阶段的伯恩斯坦算子,以提高收敛性能。最后,分别通过CEC 2019和CEC 2020的10个边界约束基准函数对BROMLDE的性能进行评估。同时使用了两个工程优化问题。对比实验结果表明,BROMLDE在大多数函数和工程问题上具有更高的全局优化能力和收敛速度。