Suppr超能文献

在冠状动脉计算机断层扫描血管造影中使用新型X射线管和深度学习图像重建时,肥胖患者的图像质量是否有改善?

Is There Any Improvement in Image Quality in Obese Patients When Using a New X-ray Tube and Deep Learning Image Reconstruction in Coronary Computed Tomography Angiography?

作者信息

Pfeffer Anne-Sofie Brunebjerg, Mørup Svea Deppe, Andersen Thomas Rueskov, Mohamed Roda Abdulkadir, Lambrechtsen Jess

机构信息

Cardiovascular Research Unit, Svendborg Hospital, Odense University Hospital, Baagøes Alle 15, 5700 Svendborg, Denmark.

Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 5000 Odense, Denmark.

出版信息

Life (Basel). 2022 Sep 13;12(9):1428. doi: 10.3390/life12091428.

Abstract

Deep learning image reconstruction (DLIR) is a technique that should reduce noise and improve image quality. This study assessed the impact of using both higher tube currents as well as DLIR on the image quality and diagnostic accuracy. The study consisted of 51 symptomatic obese (BMI > 30 kg/m2) patients with low to moderate risk of coronary artery disease (CAD). All patients underwent coronary computed tomography angiography (CCTA) twice, first with the Revolution CT scanner and then with the upgraded Revolution Apex scanner with the ability to increase tube current. Images were reconstructed using ASiR-V 50% and DLIR. The image quality was evaluated by an observer using a Likert score and by ROI measurements in aorta and the myocardium. Image quality was significantly improved with the Revolution Apex scanner and reconstruction with DLIR resulting in an odds ratio of 1.23 (p = 0.017), and noise was reduced by 41%. A total of 88% of the image sets performed with Revolution Apex + DLIR were assessed as good enough for diagnosis compared to 69% of the image sets performed with Revolution Apex/CT + ASiR-V. In obese patients, the combination of higher tube current and DLIR significantly improves the subjective image quality and diagnostic utility and reduces noise.

摘要

深度学习图像重建(DLIR)是一种有望减少噪声并提高图像质量的技术。本研究评估了使用更高管电流以及DLIR对图像质量和诊断准确性的影响。该研究纳入了51名有症状的肥胖患者(BMI>30kg/m²),其患冠状动脉疾病(CAD)的风险为低至中度。所有患者均接受了两次冠状动脉计算机断层扫描血管造影(CCTA),第一次使用Revolution CT扫描仪,第二次使用升级后的具有增加管电流能力的Revolution Apex扫描仪。图像使用自适应统计迭代重建技术(ASiR-V)50%和DLIR进行重建。由一名观察者使用李克特量表评分并通过在主动脉和心肌中的感兴趣区(ROI)测量来评估图像质量。使用Revolution Apex扫描仪和DLIR重建后,图像质量显著提高,优势比为1.23(p = 0.017),噪声降低了41%。与使用Revolution Apex/CT + ASiR-V重建的69%的图像集相比,使用Revolution Apex + DLIR重建的图像集中共有88%被评估为足以用于诊断。在肥胖患者中,更高管电流与DLIR的联合使用显著提高了主观图像质量和诊断效用,并降低了噪声。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34e/9503813/17194e8a3244/life-12-01428-g001.jpg

相似文献

4
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy.
J Cardiovasc Comput Tomogr. 2020 Sep-Oct;14(5):444-451. doi: 10.1016/j.jcct.2020.01.002. Epub 2020 Jan 13.
5
A deep-learning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography.
Eur J Radiol. 2022 Jan;146:110070. doi: 10.1016/j.ejrad.2021.110070. Epub 2021 Nov 24.
7
Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.
Radiol Med. 2023 Apr;128(4):434-444. doi: 10.1007/s11547-023-01607-8. Epub 2023 Feb 27.
10
Effect of deep learning image reconstruction with high-definition standard scan mode on image quality of coronary stents and arteries.
Quant Imaging Med Surg. 2024 Feb 1;14(2):1616-1635. doi: 10.21037/qims-23-1064. Epub 2024 Jan 17.

引用本文的文献

1
Trading off Iodine and Radiation Dose in Coronary Computed Tomography.
J Cardiovasc Dev Dis. 2025 May 20;12(5):195. doi: 10.3390/jcdd12050195.

本文引用的文献

1
Deep Learning CT Image Reconstruction in Clinical Practice.
Rofo. 2021 Mar;193(3):252-261. doi: 10.1055/a-1248-2556. Epub 2020 Dec 10.
2
The use of artificial intelligence in computed tomography image reconstruction - A literature review.
J Med Imaging Radiat Sci. 2020 Dec;51(4):671-677. doi: 10.1016/j.jmir.2020.09.001. Epub 2020 Sep 24.
4
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy.
J Cardiovasc Comput Tomogr. 2020 Sep-Oct;14(5):444-451. doi: 10.1016/j.jcct.2020.01.002. Epub 2020 Jan 13.
6
Comparison of sequential and high-pitch-spiral coronary CT-angiography: image quality and radiation exposure.
Int J Cardiovasc Imaging. 2019 Jul;35(7):1379-1386. doi: 10.1007/s10554-019-01568-y. Epub 2019 Mar 8.
7
Image quality in coronary CT angiography: challenges and technical solutions.
Br J Radiol. 2017 Apr;90(1072):20160567. doi: 10.1259/bjr.20160567. Epub 2017 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验