Suppr超能文献

深度学习图像重建算法:对冠状动脉 CT 血管造影图像质量的影响。

Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.

机构信息

Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.

出版信息

Radiol Med. 2023 Apr;128(4):434-444. doi: 10.1007/s11547-023-01607-8. Epub 2023 Feb 27.

Abstract

PURPOSE

To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V).

MATERIAL AND METHODS

Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR_L, DLIR_M, and DLIR_H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) determined objective image quality. Subjective image quality was assessed with a 4-point Likert scale. Concordance between reconstruction algorithms was assessed by Pearson correlation coefficient.

RESULTS

DLIR algorithm did not impact vascular attenuation (P ≥ 0.374). DLIR_H showed the lowest noise, comparable with ASiR-V 100% (P = 1) and significantly lower than other reconstructions (P ≤ 0.021). DLIR_H achieved the highest objective quality, with SNR and CNR comparable to ASiR-V 100% (P = 0.139 and 0.075, respectively). DLIR_M obtained comparable objective image quality with ASiR-V 80% and 90% (P ≥ 0.281), while achieved the highest subjective image quality (4, IQR: 4-4; P ≤ 0.001). DLIR and ASiR-V datasets returned a very strong correlation in the assessment of CAD (r = 0.874, P = 0.001).

CONCLUSION

DLIR_M significantly improves CCTA image quality and has very strong correlation with routinely applied ASiR-V 50% dataset in the diagnosis of CAD.

摘要

目的

使用深度学习图像重建(DLIR)对冠状动脉 CT 血管造影(CCTA)进行全面的个体内客观和主观图像质量评估,并评估其与常规应用的混合迭代重建算法(ASiR-V)的相关性。

材料和方法

前瞻性纳入 2021 年 4 月至 12 月期间行临床指征明确的 CCTA 的 51 例患者(男 29 例)。每位患者重建了 14 个数据集:DLIR 三个强度级别(DLIR_L、DLIR_M 和 DLIR_H)、ASiR-V 从 10%到 100%,以 10%的增量递增、以及滤波反投影(FBP)。信噪比(SNR)和对比噪声比(CNR)确定客观图像质量。使用 4 分李克特量表评估主观图像质量。通过 Pearson 相关系数评估重建算法之间的一致性。

结果

DLIR 算法不影响血管衰减(P≥0.374)。DLIR_H 的噪声最低,与 ASiR-V 100%(P=1)相当,且显著低于其他重建方法(P≤0.021)。DLIR_H 获得了最高的客观质量,SNR 和 CNR 与 ASiR-V 100%相当(P=0.139 和 0.075)。DLIR_M 与 ASiR-V 80%和 90%获得了相当的客观图像质量(P≥0.281),同时获得了最高的主观图像质量(4,四分位距:4-4;P≤0.001)。DLIR 和 ASiR-V 数据集在 CAD 评估方面具有非常强的相关性(r=0.874,P=0.001)。

结论

DLIR_M 显著提高了 CCTA 图像质量,与常规应用的 ASiR-V 50%数据集在 CAD 诊断方面具有非常强的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed2/10119038/66338f028571/11547_2023_1607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验