Faizullin Bulat, Dayanova Irina, Strelnik Igor, Kholin Kirill, Nizameev Irek, Gubaidullin Aidar, Voloshina Alexandra, Gerasimova Tatiana, Kashnik Ilya, Brylev Konstantin, Sibgatullina Guzel, Samigullin Dmitry, Petrov Konstantin, Musina Elvira, Karasik Andrey, Mustafina Asiya
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia.
Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx Street, 420111 Kazan, Russia.
Nanomaterials (Basel). 2022 Sep 17;12(18):3229. doi: 10.3390/nano12183229.
The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [AuL] complex (Au, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{ReQ}(OH)] (Re-Q, Q = S or Se) cluster units. The protonation/deprotonation of the Re-Q unit is a prerequisite for the pH-triggered assembly of Au and Re-Q into AuRe-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re-S on the disassembly of AuRe-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au complex arisen from the necrotic processes.
本工作介绍了一种简单的、静电驱动的方法,用于构建由高细胞毒性的[AuL]配合物(Au,L = 1,5-双(对甲苯基)-3,7-双(吡啶-2-基)-1,5-二氮杂-3,7-二磷杂环辛烷(PNNP)配体)和pH敏感的红色发光[{ReQ}(OH)](Re-Q,Q = S或Se)簇单元组成的工程纳米材料。Re-Q单元的质子化/去质子化是pH触发Au和Re-Q组装成AuRe-Q胶体的先决条件,该胶体在模拟溶酶体环境的酸性(pH = 4.5)条件下会发生解离。聚乙烯亚胺的抗衡离子效应导致Re-Q单元从胶体中释放出来,而与溶菌酶的结合则限制了它们在酸化条件下的质子化。在溶酶体环境中,AuRe-S胶体解离时Re-S的发光响应增强,这使我们能够通过共定位分析确定它们在溶酶体中的高定位程度,而在相同条件下Re-Se单元的低发光则使我们能够通过使用吖啶橙分析揭示溶酶体膜的破裂。胶体的溶酶体途径,随后其在内吞/溶酶体中的逃逸,与其细胞毒性相关,其细胞毒性与Au配合物处于同一水平,但凋亡途径的作用使胶体的细胞毒性效应与由坏死过程产生的Au配合物的细胞毒性效应有所不同。