Suppr超能文献

基于深度神经网络的多类可度量资源三方量子态分类

Multiclass Classification of Metrologically Resourceful Tripartite Quantum States with Deep Neural Networks.

机构信息

Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Korea.

School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT7 1NN, UK.

出版信息

Sensors (Basel). 2022 Sep 7;22(18):6767. doi: 10.3390/s22186767.

Abstract

Quantum entanglement is a unique phenomenon of quantum mechanics, which has no classical counterpart and gives quantum systems their advantage in computing, communication, sensing, and metrology. In quantum sensing and metrology, utilizing an entangled probe state enhances the achievable precision more than its classical counterpart. Noise in the probe state preparation step can cause the system to output unentangled states, which might not be resourceful. Hence, an effective method for the detection and classification of tripartite entanglement is required at that step. However, current mathematical methods cannot robustly classify multiclass entanglement in tripartite quantum systems, especially in the case of mixed states. In this paper, we explore the utility of artificial neural networks for classifying the entanglement of tripartite quantum states into fully separable, biseparable, and fully entangled states. We employed Bell's inequality for the dataset of tripartite quantum states and train the deep neural network for multiclass classification. This entanglement classification method is computationally efficient due to using a small number of measurements. At the same time, it also maintains generalization by covering a large Hilbert space of tripartite quantum states.

摘要

量子纠缠是量子力学的一种独特现象,它没有经典对应物,这使得量子系统在计算、通信、传感和计量学方面具有优势。在量子传感和计量学中,利用纠缠探针态可以提高可实现的精度,超过其经典对应物。在探针态制备步骤中的噪声会导致系统输出非纠缠态,这可能不是有益的。因此,在该步骤中需要一种有效的方法来检测和分类三方纠缠。然而,目前的数学方法无法稳健地分类三方量子系统中的多类纠缠,特别是在混合态的情况下。在本文中,我们探讨了人工神经网络在将三方量子态的纠缠分类为完全可分离、双分离和完全纠缠态中的应用。我们使用贝尔不等式对三方量子态数据集进行训练,并使用深度神经网络进行多类分类。这种纠缠分类方法由于使用了少量的测量,因此计算效率高。同时,它还通过覆盖三方量子态的大希尔伯特空间来保持泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/964a/9500965/75cfa885d5e6/sensors-22-06767-g001.jpg

相似文献

2
Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise.
Entropy (Basel). 2021 May 28;23(6):685. doi: 10.3390/e23060685.
3
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Nature. 2010 Sep 30;467(7315):574-8. doi: 10.1038/nature09416.
4
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Phys Rev Lett. 2016 Dec 9;117(24):240503. doi: 10.1103/PhysRevLett.117.240503. Epub 2016 Dec 6.
7
Device-independent witnesses of genuine multipartite entanglement.
Phys Rev Lett. 2011 Jun 24;106(25):250404. doi: 10.1103/PhysRevLett.106.250404.
8
Entanglement detection with artificial neural networks.
Sci Rep. 2023 Jan 28;13(1):1562. doi: 10.1038/s41598-023-28745-3.
9
Strong Quantum Metrological Limit from Many-Body Physics.
Phys Rev Lett. 2023 Apr 28;130(17):170801. doi: 10.1103/PhysRevLett.130.170801.
10
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
Nature. 2015 Mar 26;519(7544):439-42. doi: 10.1038/nature14293.

本文引用的文献

1
Quantum advantage in postselected metrology.
Nat Commun. 2020 Jul 29;11(1):3775. doi: 10.1038/s41467-020-17559-w.
2
Parallel entangling operations on a universal ion-trap quantum computer.
Nature. 2019 Aug;572(7769):368-372. doi: 10.1038/s41586-019-1427-5. Epub 2019 Jul 24.
3
Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience.
Sci Rep. 2019 Mar 18;9(1):4778. doi: 10.1038/s41598-019-41324-9.
4
Experimental Machine Learning of Quantum States.
Phys Rev Lett. 2018 Jun 15;120(24):240501. doi: 10.1103/PhysRevLett.120.240501.
5
Quantum machine learning.
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.
6
Machine learning quantum phases of matter beyond the fermion sign problem.
Sci Rep. 2017 Aug 18;7(1):8823. doi: 10.1038/s41598-017-09098-0.
7
Solving the quantum many-body problem with artificial neural networks.
Science. 2017 Feb 10;355(6325):602-606. doi: 10.1126/science.aag2302.
8
Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout.
Phys Rev Lett. 2015 May 22;114(20):200501. doi: 10.1103/PhysRevLett.114.200501. Epub 2015 May 18.
9
Using entanglement against noise in quantum metrology.
Phys Rev Lett. 2014 Dec 19;113(25):250801. doi: 10.1103/PhysRevLett.113.250801.
10
Quantum metrology in open systems: dissipative Cramér-Rao bound.
Phys Rev Lett. 2014 Mar 28;112(12):120405. doi: 10.1103/PhysRevLett.112.120405. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验