Department of Physics, Sharif University of Technology, Tehran 14588, Iran.
Phys Rev Lett. 2014 Mar 28;112(12):120405. doi: 10.1103/PhysRevLett.112.120405. Epub 2014 Mar 26.
Estimation of parameters is a pivotal task throughout science and technology. The quantum Cramér-Rao bound provides a fundamental limit of precision allowed to be achieved under quantum theory. For closed quantum systems, it has been shown how the estimation precision depends on the underlying dynamics. Here, we propose a general formulation for metrology scenarios in open quantum systems, aiming to relate the precision more directly to properties of the underlying dynamics. This feature may be employed to enhance an estimation precision, e.g., by quantum control techniques. Specifically, we derive a Cramér-Rao bound for a fairly large class of open system dynamics, which is governed by a (time-dependent) dynamical semigroup map. We illustrate the utility of this scenario through three examples.
参数估计是贯穿科学和技术的一项关键任务。量子克拉默-罗界提供了量子理论下允许达到的精度的基本限制。对于封闭的量子系统,已经展示了如何根据基础动力学来确定估计精度。在这里,我们为开放量子系统中的计量学场景提出了一个通用的表述,旨在将精度更直接地与基础动力学的性质联系起来。这一特性可用于提高估计精度,例如通过量子控制技术。具体来说,我们推导出一个相当大的开放系统动力学类的克拉默-罗界,该动力学类由(时变)动力半群映射控制。我们通过三个例子说明了这种情况的实用性。