Suppr超能文献

基于双层模型的变电站缺陷红外图像检测

Two-Level Model for Detecting Substation Defects from Infrared Images.

机构信息

Department of Automation, North China Electric Power University, Baoding 071003, China.

出版信息

Sensors (Basel). 2022 Sep 10;22(18):6861. doi: 10.3390/s22186861.

Abstract

Training a deep convolutional neural network (DCNN) to detect defects in substation equipment often requires many defect datasets. However, this dataset is not easily acquired, and the complex background of the infrared images makes defect detection even more difficult. To alleviate this issue, this article presents a two-level defect detection model (TDDM). First, to extract the target equipment in the image, an instance segmentation module is constructed by training from the instance segmentation dataset. Then, the target equipment is segmented by the superpixel segmentation algorithm into superpixels according to obtain more details information. Next, a temperature probability density distribution is constructed with the superpixels, and the defect determination strategy is used to recognize the defect. Finally, experiments verify the effectiveness of the TDDM according to the defect detection dataset.

摘要

训练深度卷积神经网络(DCNN)来检测变电站设备缺陷通常需要许多缺陷数据集。然而,这种数据集不容易获取,并且红外图像的复杂背景使得缺陷检测更加困难。为了解决这个问题,本文提出了一种两级缺陷检测模型(TDDM)。首先,为了从图像中提取目标设备,通过从实例分割数据集进行训练,构建了一个实例分割模块。然后,通过超像素分割算法将目标设备分割成超像素,以获得更多的细节信息。接下来,利用超像素构建温度概率密度分布,并使用缺陷判定策略来识别缺陷。最后,根据缺陷检测数据集验证了 TDDM 的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14c/9506384/a016a0f6e5a2/sensors-22-06861-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验