Pang Lei, Li Baoxuan, Zhang Fengli, Meng Xichen, Zhang Lu
School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
Sensors (Basel). 2022 Sep 19;22(18):7088. doi: 10.3390/s22187088.
Unlike optical satellites, synthetic aperture radar (SAR) satellites can operate all day and in all weather conditions, so they have a broad range of applications in the field of ocean monitoring. The ship targets' contour information from SAR images is often unclear, and the background is complicated due to the influence of sea clutter and proximity to land, leading to the accuracy problem of ship monitoring. Compared with traditional methods, deep learning has powerful data processing ability and feature extraction ability, but its complex model and calculations lead to a certain degree of difficulty. To solve this problem, we propose a lightweight YOLOV5-MNE, which significantly improves the training speed and reduces the running memory and number of model parameters and maintains a certain accuracy on a lager dataset. By redesigning the MNEBlock module and using CBR standard convolution to reduce computation, we integrated the CA (coordinate attention) mechanism to ensure better detection performance. We achieved 94.7% precision, a 2.2 M model size, and a 0.91 M parameter quantity on the SSDD dataset.
与光学卫星不同,合成孔径雷达(SAR)卫星可以在全天候条件下运行,因此在海洋监测领域有广泛的应用。由于海杂波和靠近陆地的影响,SAR图像中船舶目标的轮廓信息往往不清晰,背景复杂,导致船舶监测的准确性问题。与传统方法相比,深度学习具有强大的数据处理能力和特征提取能力,但其复杂的模型和计算导致一定程度的困难。为了解决这个问题,我们提出了一种轻量级的YOLOV5-MNE,它显著提高了训练速度,减少了运行内存和模型参数数量,并在更大的数据集上保持了一定的准确性。通过重新设计MNEBlock模块并使用CBR标准卷积来减少计算量,我们集成了CA(坐标注意力)机制以确保更好的检测性能。在SSDD数据集上,我们实现了94.7%的精度、2.2M的模型大小和0.91M的参数量。