Suppr超能文献

基于深度学习和形态学网络的复杂地理环境下合成孔径雷达图像中的舰船检测

Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks.

作者信息

Cao Shen, Zhao Congxia, Dong Jian, Fu Xiongjun

机构信息

Beijing Institute of Technology, Beijing 100081, China.

Tangshan Research Institute of BIT, Tangshan 063007, China.

出版信息

Sensors (Basel). 2024 Jul 1;24(13):4290. doi: 10.3390/s24134290.

Abstract

Synthetic Aperture Radar (SAR) ship detection is applicable to various scenarios, such as maritime monitoring and navigational aids. However, the detection process is often prone to errors due to interferences from complex environmental factors like speckle noise, coastlines, and islands, which may result in false positives or missed detections. This article introduces a ship detection method for SAR images, which employs deep learning and morphological networks. Initially, adaptive preprocessing is carried out by a morphological network to enhance the edge features of ships and suppress background noise, thereby increasing detection accuracy. Subsequently, a coordinate channel attention module is integrated into the feature extraction network to improve the spatial awareness of the network toward ships, thus reducing the incidence of missed detections. Finally, a four-layer bidirectional feature pyramid network is designed, incorporating large-scale feature maps to capture detailed characteristics of ships, to enhance the detection capabilities of the network in complex geographic environments. Experiments were conducted using the publicly available SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID). Compared with the baseline model YOLOX, the proposed method increased the recall by 3.11% and 0.22% for the SSDD and HRSID, respectively. Additionally, the mean Average Precision (mAP) improved by 0.7% and 0.36%, reaching 98.47% and 91.71% on these datasets. These results demonstrate the outstanding detection performance of our method.

摘要

合成孔径雷达(SAR)舰船检测适用于多种场景,如海上监测和导航辅助。然而,由于斑点噪声、海岸线和岛屿等复杂环境因素的干扰,检测过程往往容易出错,这可能导致误报或漏检。本文介绍了一种用于SAR图像的舰船检测方法,该方法采用深度学习和形态学网络。首先,通过形态学网络进行自适应预处理,以增强舰船的边缘特征并抑制背景噪声,从而提高检测精度。随后,将坐标通道注意力模块集成到特征提取网络中,以提高网络对舰船的空间感知能力,从而减少漏检的发生率。最后,设计了一个四层双向特征金字塔网络,纳入大规模特征图以捕捉舰船的详细特征,以增强网络在复杂地理环境中的检测能力。使用公开可用的SAR舰船检测数据集(SSDD)和高分辨率SAR图像数据集(HRSID)进行了实验。与基线模型YOLOX相比,该方法在SSDD和HRSID上的召回率分别提高了3.11%和0.22%。此外,平均精度均值(mAP)分别提高了0.7%和0.36%,在这些数据集上达到了98.47%和91.71%。这些结果证明了我们方法出色的检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a77/11243990/0a5334162d93/sensors-24-04290-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验