Suppr超能文献

LPDNet:一种基于多级拉普拉斯去噪的 SAR 船舶检测轻量级网络。

LPDNet: A Lightweight Network for SAR Ship Detection Based on Multi-Level Laplacian Denoising.

机构信息

Beijing Institute of Technology, Beijing 100081, China.

Tangshan Research Institute of BIT, Tangshan 063000, China.

出版信息

Sensors (Basel). 2023 Jul 1;23(13):6084. doi: 10.3390/s23136084.

Abstract

Intelligent ship detection based on synthetic aperture radar (SAR) is vital in maritime situational awareness. Deep learning methods have great advantages in SAR ship detection. However, the methods do not strike a balance between lightweight and accuracy. In this article, we propose an end-to-end lightweight SAR target detection algorithm, multi-level Laplacian pyramid denoising network (LPDNet). Firstly, an intelligent denoising method based on the multi-level Laplacian transform is proposed. Through Convolutional Neural Network (CNN)-based threshold suppression, the denoising becomes adaptive to every SAR image via back-propagation and makes the denoising processing supervised. Secondly, channel modeling is proposed to combine the spatial domain and frequency domain information. Multi-dimensional information enhances the detection effect. Thirdly, the Convolutional Block Attention Module (CBAM) is introduced into the feature fusion module of the basic framework (Yolox-tiny) so that different weights are given to each pixel of the feature map to highlight the effective features. Experiments on SSDD and AIR SARShip-1.0 demonstrate that the proposed method achieves 97.14% AP with a speed of 24.68FPS and 92.19% AP with a speed of 23.42FPS, respectively, with only 5.1 M parameters, which verifies the accuracy, efficiency, and lightweight of the proposed method.

摘要

基于合成孔径雷达 (SAR) 的智能船舶检测在海上态势感知中至关重要。深度学习方法在 SAR 船舶检测中具有很大的优势。然而,这些方法在轻量化和准确性之间没有达到平衡。本文提出了一种端到端的轻量级 SAR 目标检测算法,多级拉普拉斯金字塔去噪网络 (LPDNet)。首先,提出了一种基于多级拉普拉斯变换的智能去噪方法。通过基于卷积神经网络 (CNN) 的阈值抑制,通过反向传播使去噪对每幅 SAR 图像自适应,从而实现去噪处理的监督。其次,提出了通道建模来结合空域和频域信息。多维信息增强了检测效果。第三,将卷积注意力模块 (CBAM) 引入到基本框架 (Yolox-tiny) 的特征融合模块中,以便为特征图的每个像素赋予不同的权重,突出有效特征。在 SSDD 和 AIR SARShip-1.0 上的实验表明,所提出的方法分别以 24.68FPS 的速度实现了 97.14%的 AP 和以 23.42FPS 的速度实现了 92.19%的 AP,同时参数量仅为 5.1M,验证了所提出方法的准确性、效率和轻量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb7/10347162/c52dac5e5845/sensors-23-06084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验