Mahatara Sharad, Thapa Suresh, Paik Hanjong, Comes Ryan, Kiefer Boris
Department of Physics, New Mexico State University, 1255 N Horseshoe, Las Cruces, New Mexico 88003-8001, United States.
Department of Physics, Auburn University, 380 Duncan Drive, Auburn, Alabama 36849, United States.
ACS Appl Mater Interfaces. 2022 Oct 5;14(39):45025-45031. doi: 10.1021/acsami.2c12195. Epub 2022 Sep 23.
Oxide two-dimensional electron gases (2DEGs) promise high charge carrier concentrations and low-loss electronic transport in semiconductors such as BaSnO (BSO). ACBN0 computations for BSO/SrNbO (SNO) interfaces show Nb- electron injection into extended Sn- electronic states. The conduction band minimum consists of Sn- states ∼1.2 eV below the Fermi level for intermediate thickness 6-unit cell BSO/6-unit cell SNO superlattices, corresponding to an electron density in BSO of ∼10 cm. Experimental studies of analogous BSO/SNO interfaces grown by molecular beam epitaxy confirm significant charge transfer from SNO to BSO. In situ angle-resolved X-ray photoelectron spectroscopy studies show an electron density of ∼4 × 10 cm. The consistency of theory and experiments show that BSO/SNO interfaces provide a novel materials platform for low loss electron transport in 2DEGs.
氧化物二维电子气(2DEGs)有望在诸如BaSnO(BSO)等半导体中实现高载流子浓度和低损耗电子输运。对BSO/SrNbO(SNO)界面的ACBN0计算表明,Nb电子注入到扩展的Sn电子态中。对于中间厚度为6个晶胞的BSO/6个晶胞的SNO超晶格,导带最小值由费米能级以下约1.2 eV的Sn态组成,对应于BSO中约10 cm的电子密度。通过分子束外延生长的类似BSO/SNO界面的实验研究证实了从SNO到BSO的显著电荷转移。原位角分辨X射线光电子能谱研究显示电子密度约为4×10 cm。理论与实验的一致性表明,BSO/SNO界面为二维电子气中的低损耗电子输运提供了一个新型材料平台。