Suppr超能文献

宏基因组定标法根据肠道宏基因组在个体间的可变性来估算人类群体规模。

MicrobiomeCensus estimates human population sizes from wastewater samples based on inter-individual variability in gut microbiomes.

机构信息

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America.

Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri, United States of America.

出版信息

PLoS Comput Biol. 2022 Sep 23;18(9):e1010472. doi: 10.1371/journal.pcbi.1010472. eCollection 2022 Sep.

Abstract

The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess human health status at scales beyond a single host. Analyzing the viral fraction of wastewater in the ongoing COVID-19 pandemic has shown the potential of wastewater as aggregated samples for early detection, prevalence monitoring, and variant identification of human diseases in large populations. However, using census-based population size instead of real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we show that taxon abundance and sub-species diversisty in gut-associated microbiomes are new feature space to utilize for human population estimation. Using a population-scale human gut microbiome sample of over 1,100 people, we found that taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships with respect to human population size. Here and throughout this paper, the human population size is essentially the sample size from the wastewater sample. We present a new algorithm, MicrobiomeCensus, for estimating human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple taxa's relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in data-driven simulation benchmarks and detected population size differences in field data. New theorems are provided to justify our approach. This research provides a mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more accurate ecological and public health studies utilizing the sewage metagenome.

摘要

城市污水中的宏基因组是一种有吸引力的新数据源,可以帮助我们在超越单一宿主的尺度上了解城市生态系统和评估人类健康状况。在持续的 COVID-19 大流行期间,对废水的病毒部分进行分析表明,废水作为聚合样本具有在大人群中进行早期检测、流行监测和人类疾病变异识别的潜力。然而,使用基于人口普查的人口规模而不是实时人口估计,可能会导致对从污水中获得的数据的解释产生误导,从而阻碍对代表性的评估、对流行率的推断,或对不同地点的分类群进行比较。在这里,我们表明,肠道相关微生物组中的分类群丰度和亚种多样性是用于人类种群估计的新特征空间。使用超过 1100 人的人群规模的人类肠道微生物组样本,我们发现肠道相关多人微生物组的分类群丰度分布与人类人口规模具有普遍的关系。在这里和整篇论文中,人口规模本质上是污水样本中的样本规模。我们提出了一种新的算法 MicrobiomeCensus,用于从污水样本中估计人类人口规模。MicrobiomeCensus 利用了人类肠道微生物组中的个体间可变性,并根据多个分类群的相对丰度与其群体平均值的同时偏差,进行最大似然估计。MicrobiomeCensus 在数据驱动的模拟基准测试中优于通用算法,并在现场数据中检测到了人口规模差异。提供了新的定理来证明我们的方法。这项研究为从污水样本中实时推断人口规模提供了一个数学框架,为利用污水宏基因组进行更准确的生态和公共卫生研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e4/9534451/b701de5042d4/pcbi.1010472.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验