Suppr超能文献

并研究金属氧化物纳米粒子混合物对细胞的毒性:一种机制方法。

and study of mixtures cytotoxicity of metal oxide nanoparticles to : a mechanistic approach.

机构信息

Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ, USA.

Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.

出版信息

Nanotoxicology. 2022 Jun;16(5):566-579. doi: 10.1080/17435390.2022.2123750. Epub 2022 Sep 23.

Abstract

Metal oxide nanoparticles (MONPs) are commonly found in the aquatic and terrestrial systems as chemical mixtures. Assessment of cytotoxicity associated with single and combination of MONPs can truly identify the concerned environmental risk. Thus, using as a test model, cytotoxicity of 6 single MONPs, 15 binary and 20 tertiary mixtures with equitoxic ratios was evaluated following standard bioassay protocols. Assessment of oxidative stress suggested that the production of reactive oxygen species (ROS) was negligible, and the release of metal zinc ions played an important role in the toxicity of MONP mixtures. From our experimental data points, seven quantitative structure-activity relationships (QSARs) models were developed to model the cytotoxicity of these MONPs, based on our created periodic table-based descriptors and experimentally analyzed Zeta-potential. Two strategic approaches i.e. pharmacological and mathematical hypotheses were considered to identify the mixture descriptors pool for modeling purposes. The stringent validation criteria suggested that the model (Model M4) developed with mixture descriptors generated by square-root mole contribution outperformed the other six models considering validation criteria. While considering the pharmacological approach, the 'independent action' generated descriptor pool offered the best model (Model M2), which firmly confirmed that each MONP in the mixture acts through 'independent action' to induce cytotoxicity to instead of fostering an additive, antagonistic or synergistic effect among MONPs. The total metal electronegativity in a specific metal oxide relative to the number of oxygen atoms and metal valence was associated with a positive contribution to cytotoxicity. At the same time, the core count, which gives a measure of molecular bulk and Zeta potential, had a negative contribution to cytotoxicity.

摘要

金属氧化物纳米粒子(MONPs)作为化学混合物普遍存在于水和陆地系统中。评估与单一和组合的 MONPs 相关的细胞毒性可以真正识别出相关的环境风险。因此,以 作为测试模型,根据标准生物测定方案评估了 6 种单一 MONPs、15 种二元混合物和 20 种三元混合物的细胞毒性,这些混合物的毒性比为等毒性比。氧化应激评估表明,活性氧(ROS)的产生可忽略不计,金属锌离子的释放对 MONP 混合物的毒性起着重要作用。根据我们的实验数据点,基于我们创建的基于元素周期表的描述符和实验分析的 Zeta 电位,开发了七个定量结构-活性关系(QSAR)模型来模拟这些 MONPs 的细胞毒性。为了建模目的,考虑了两种策略性方法,即药理学和数学假设,以识别混合物描述符池。严格的验证标准表明,使用平方根摩尔贡献生成的混合物描述符开发的模型(模型 M4)在考虑验证标准时优于其他六个模型。在考虑药理学方法时,“独立作用”生成的描述符池提供了最佳模型(模型 M2),这有力地证实了混合物中的每个 MONP 通过“独立作用”来诱导 产生细胞毒性,而不是促进 MONPs 之间的加性、拮抗或协同作用。特定金属氧化物中金属的总电负性相对于氧原子的数量和金属价与细胞毒性呈正相关。同时,核心数反映了分子的体积和 Zeta 电位,与细胞毒性呈负相关。

相似文献

1
and study of mixtures cytotoxicity of metal oxide nanoparticles to : a mechanistic approach.
Nanotoxicology. 2022 Jun;16(5):566-579. doi: 10.1080/17435390.2022.2123750. Epub 2022 Sep 23.
3
Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach.
Ecotoxicol Environ Saf. 2014 Sep;107:162-9. doi: 10.1016/j.ecoenv.2014.05.026. Epub 2014 Jun 18.
5
Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles.
J Photochem Photobiol B. 2014 Jan 5;130:234-40. doi: 10.1016/j.jphotobiol.2013.11.023. Epub 2013 Dec 4.
6
Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
Ecotoxicol Environ Saf. 2022 Sep 15;243:113955. doi: 10.1016/j.ecoenv.2022.113955. Epub 2022 Aug 9.
7
Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
Ecotoxicol Environ Saf. 2015 Feb;112:39-45. doi: 10.1016/j.ecoenv.2014.10.003. Epub 2014 Nov 5.
8
Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles.
Beilstein J Nanotechnol. 2024 Sep 10;15:1142-1152. doi: 10.3762/bjnano.15.93. eCollection 2024.
9
Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
Environ Int. 2023 Jul;177:108025. doi: 10.1016/j.envint.2023.108025. Epub 2023 Jun 9.
10
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
Nat Nanotechnol. 2011 Mar;6(3):175-8. doi: 10.1038/nnano.2011.10. Epub 2011 Feb 13.

本文引用的文献

3
Metal Oxide Nanoparticles as Biomedical Materials.
Biomimetics (Basel). 2020 Jun 8;5(2):27. doi: 10.3390/biomimetics5020027.
4
Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment.
Chem Res Toxicol. 2019 Jul 15;32(7):1320-1326. doi: 10.1021/acs.chemrestox.9b00022. Epub 2019 Jun 20.
5
Risk assessment of heterogeneous TiO-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors.
Nanotoxicology. 2019 Jun;13(5):701-716. doi: 10.1080/17435390.2019.1593543. Epub 2019 Apr 2.
6
7
Proxy Measures for Simplified Environmental Assessment of Manufactured Nanomaterials.
Environ Sci Technol. 2018 Dec 4;52(23):13670-13680. doi: 10.1021/acs.est.8b05405. Epub 2018 Nov 21.
9
Grouping of nanomaterials to read-across hazard endpoints: a review.
Nanotoxicology. 2019 Feb;13(1):100-118. doi: 10.1080/17435390.2018.1506060. Epub 2018 Sep 5.
10
Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?
F1000Res. 2018 Mar 26;7:376. doi: 10.12688/f1000research.12691.1. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验