Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet , INSERM, U 1059 Sainbiose, Centre CIS , F-42023 Saint-Etienne , France.
MINES ParisTech , PSL Research University , MAT - Centre des matériaux, CNRS UMR 7633 , BP 87 91003 Evry , France.
Chem Res Toxicol. 2019 Jul 15;32(7):1320-1326. doi: 10.1021/acs.chemrestox.9b00022. Epub 2019 Jun 20.
Because it is impossible to assess or the toxicity of all nanoparticles available on the market on a case-by-case basis, computational approaches have been proposed as useful alternatives to predict the hazard potential of engineered nanoparticles. Despite promising results, a major issue associated with these mathematical models lies in the choice of the physicochemical descriptors and the biological end points. We performed a thorough bibliographic survey on the biological end points used for nanotoxicology purposes and compared them between experimental and computational approaches. They were found to be disparate: while conventional nanotoxicology assays usually investigate a large array of biological effects using eukaryotic cells (cytotoxicity, pro-inflammatory response, oxidative stress, genotoxicity), computational studies mostly focus on cell viability and also include studies on prokaryotic cells. We may thus wonder the relevance of building complex mathematical models able to predict accurately a biological end point if this latter is not the most relevant to support human health risk assessment. The choice of biological end points clearly deserves to be more carefully discussed. This could bridge the gap between experimental and computational nanotoxicology studies and allow predictive models to reach their full potential.
由于不可能逐个评估市场上现有纳米粒子的毒性,因此已提出计算方法作为预测工程纳米粒子危害潜力的有用替代方法。尽管取得了有希望的结果,但这些数学模型存在的一个主要问题在于理化描述符和生物终点的选择。我们对用于纳米毒理学目的的生物终点进行了全面的文献调查,并将它们在实验和计算方法之间进行了比较。结果发现它们存在差异:虽然传统的纳米毒理学测定通常使用真核细胞(细胞毒性、促炎反应、氧化应激、遗传毒性)研究大量的生物学效应,但计算研究主要集中在细胞活力上,还包括对原核细胞的研究。因此,如果这个生物终点不是最相关的,以支持人类健康风险评估,那么构建能够准确预测生物终点的复杂数学模型的相关性就值得怀疑。生物终点的选择显然需要更仔细地讨论。这可以弥合实验和计算纳米毒理学研究之间的差距,并使预测模型充分发挥其潜力。