Suppr超能文献

肿瘤放射组学和深度学习的前瞻性临床研究:转化综述。

Prospective clinical research of radiomics and deep learning in oncology: A translational review.

机构信息

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China; Department of New Networks, Peng Cheng Laboratory, Shenzhen 518000, China.

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China; Department of New Networks, Peng Cheng Laboratory, Shenzhen 518000, China; Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia.

出版信息

Crit Rev Oncol Hematol. 2022 Nov;179:103823. doi: 10.1016/j.critrevonc.2022.103823. Epub 2022 Sep 21.

Abstract

Radiomics and deep learning (DL) hold transformative promise and substantial and significant advances in oncology; however, most methods have been tested in retrospective or simulated settings. There is considerable interest in the biomarker validation, clinical utility, and methodological robustness of these studies and their deployment in real-world settings. This review summarizes the characteristics of studies, the level of prospective validation, and the overview of research on different clinical endpoints. The discussion of methodological robustness shows the potential for independent external replication of prospectively reported results. These in-depth analyses further describe the barriers limiting the translation of radiomics and DL into primary care options and provide specific recommendations regarding clinical deployment. Finally, we propose solutions for integrating novel approaches into the treatment environment to unravel the critical process of translating AI models into the clinical routine and explore strategies to improve personalized medicine.

摘要

放射组学和深度学习(DL)在肿瘤学领域具有变革性的潜力和重大进展;然而,大多数方法都是在回顾性或模拟环境中进行测试的。人们对这些研究的生物标志物验证、临床实用性和方法学稳健性以及在实际环境中的应用非常感兴趣。本综述总结了研究的特点、前瞻性验证的水平以及不同临床终点的研究概述。对方法学稳健性的讨论表明,有潜力对前瞻性报告的结果进行独立的外部复制。这些深入的分析进一步描述了限制放射组学和 DL 转化为初级保健选择的障碍,并就临床部署提供了具体建议。最后,我们提出了将新方法整合到治疗环境中的解决方案,以揭示将人工智能模型转化为临床常规的关键过程,并探讨了改善个性化医疗的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验