Suppr超能文献

基于影像组学的机器学习在肝内胆管癌中的应用现状:系统评价与Meta分析

The Application Status of Radiomics-Based Machine Learning in Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis.

作者信息

Xu Lan, Chen Zian, Zhu Dan, Wang Yingjun

机构信息

Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.

Dispensary TCM, Quzhou Municipal Hospital of Traditional Chinese Medicine, Quzhou, China.

出版信息

J Med Internet Res. 2025 May 5;27:e69906. doi: 10.2196/69906.

Abstract

BACKGROUND

Over the past few years, radiomics for the detection of intrahepatic cholangiocarcinoma (ICC) has been extensively studied. However, systematic evidence is lacking in the use of radiomics in this domain, which hinders its further development.

OBJECTIVE

To address this gap, our study delved into the status quo and application value of radiomics in ICC and aimed to offer evidence-based support to promote its systematic application in this field.

METHODS

PubMed, Web of Science, Cochrane Library, and Embase were comprehensively retrieved to determine relevant original studies. The study quality was appraised through the Radiomics Quality Score. In addition, subgroup analyses were undertaken according to datasets (training and validation sets), imaging sources, and model types.

RESULTS

Fifty-eight studies encompassing 12,903 patients were eligible, with an average Radiomics Quality Score of 9.21. Radiomics-based machine learning (ML) was mainly used to diagnose ICC (n=30), microvascular invasion (n=8), gene mutations (n=5), perineural invasion (PNI; n=2), lymph node (LN) positivity (n=2), and tertiary lymphoid structures (TLSs; n=2), and predict overall survival (n=6) and recurrence (n=9). The C-index, sensitivity (SEN), and specificity (SPC) of the ML model developed using clinical features (CFs) for ICC detection were 0.762 (95% CI 0.728-0.796), 0.72 (95% CI 0.66-0.77), and 0.72 (95% CI 0.66-0.78), respectively, in the validation dataset. In contrast, the C-index, SEN, and SPC of the radiomics-based ML model for detecting ICC were 0.853 (95% CI 0.824-0.882), 0.80 (95% CI 0.73-0.85), and 0.88 (95% CI 0.83-0.92), respectively. The C-index, SEN, and SPC of ML constructed using both radiomics and CFs for diagnosing ICC were 0.912 (95% CI 0.889-0.935), 0.77 (95% CI 0.72-0.81), and 0.90 (95% CI 0.86-0.92). The deep learning-based model that integrated both radiomics and CFs yielded a notably higher C-index of 0.924 (0.863-0.984) in the task of detecting ICC. Additional analyses showed that radiomics demonstrated promising accuracy in predicting overall survival and recurrence, as well as in diagnosing microvascular invasion, gene mutations, PNI, LN positivity, and TLSs.

CONCLUSIONS

Radiomics-based ML demonstrates excellent accuracy in the clinical diagnosis of ICC. However, studies involving specific tasks, such as diagnosing PNI and TLSs, are still scarce. The limited research on deep learning has hindered both further analysis and the development of subgroup analyses across various models. Furthermore, challenges such as data heterogeneity and interpretability caused by segmentation and imaging parameter variations require further optimization and refinement. Future research should delve into the application of radiomics to enhance its clinical use. Its integration into clinical practice holds great promise for improving decision-making, boosting diagnostic and treatment accuracy, minimizing unnecessary tests, and optimizing health care resource usage.

摘要

背景

在过去几年中,用于检测肝内胆管癌(ICC)的放射组学已得到广泛研究。然而,在该领域使用放射组学缺乏系统性证据,这阻碍了其进一步发展。

目的

为填补这一空白,我们的研究深入探讨了放射组学在ICC中的现状和应用价值,旨在提供循证支持,以促进其在该领域的系统应用。

方法

全面检索PubMed、Web of Science、Cochrane图书馆和Embase以确定相关原始研究。通过放射组学质量评分评估研究质量。此外,根据数据集(训练集和验证集)、影像来源和模型类型进行亚组分析。

结果

纳入58项研究,共12903例患者,放射组学质量评分平均为9.21。基于放射组学的机器学习(ML)主要用于诊断ICC(n = 30)、微血管侵犯(n = 8)、基因突变(n = 5)、神经周围侵犯(PNI;n = 2)、淋巴结(LN)阳性(n = 2)和三级淋巴结构(TLSs;n = 2),以及预测总生存期(n = 6)和复发(n = 9)。在验证数据集中,使用临床特征(CFs)构建的用于ICC检测的ML模型的C指数、灵敏度(SEN)和特异度(SPC)分别为0.762(95%CI 0.728 - 0.796)、0.72(95%CI 0.66 - 0.77)和0.72(95%CI 0.66 - 0.78)。相比之下,基于放射组学的ML模型检测ICC的C指数、SEN和SPC分别为0.853(95%CI 0.824 - 0.882)、0.80(95%CI 0.73 - 0.85)和0.88(95%CI 0.83 - 0.92)。使用放射组学和CFs构建的用于诊断ICC的ML的C指数、SEN和SPC分别为0.912(95%CI 0.889 - 0.935)、0.77(95%CI 0.72 - 0.81)和0.90(95%CI 0.86 - 0.92)。在检测ICC任务中,整合放射组学和CFs的基于深度学习的模型产生了显著更高的C指数,为0.924(0.863 - 0.984)。进一步分析表明,放射组学在预测总生存期和复发以及诊断微血管侵犯、基因突变、PNI、LN阳性和TLSs方面显示出有前景的准确性。

结论

基于放射组学的ML在ICC临床诊断中显示出优异的准确性。然而,涉及特定任务(如诊断PNI和TLSs)的研究仍然很少。深度学习的有限研究阻碍了进一步分析以及跨各种模型的亚组分析的发展。此外,由分割和成像参数变化引起的数据异质性和可解释性等挑战需要进一步优化和完善。未来研究应深入探讨放射组学的应用以增强其临床应用。将其整合到临床实践中有望改善决策、提高诊断和治疗准确性、减少不必要的检查并优化医疗资源使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0102/12089883/3416a61eb7fb/jmir_v27i1e69906_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验