Suppr超能文献

基于影像组学的早期浆液性交界性卵巢肿瘤与恶性卵巢肿瘤术前鉴别诊断

Habitat-based radiomics for preoperative differentiation between early-stage serous borderline ovarian tumors and malignant ovarian tumors.

作者信息

Yu Xinping, Zou Yuwei, Wang Chang, Wang Lei, Jiao Jinwen, Yu Haiyang, Zhang Shuai

机构信息

Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

出版信息

Front Oncol. 2025 May 20;15:1559398. doi: 10.3389/fonc.2025.1559398. eCollection 2025.

Abstract

OBJECTIVES

To evaluate the effectiveness of habitat-based radiomics in differentiating early-stage serous borderline ovarian tumors (SBOTs) from serous malignant ovarian tumors (SMOTs), thereby enhancing diagnostic precision and treatment strategies.

METHODS

We conducted a retrospective analysis of 210 patients with histopathologically confirmed SBOTs (n=95) and SMOTs (n=115) between December 2017 and February 2021. Multi-detector computed tomography images were obtained and analyzed using habitat-based radiomics, which segments tumors into distinct microenvironments based on Hounsfield Unit values. Clinical characteristics and imaging features were assessed, and predictive models were developed using logistic regression. Model performance was evaluated through receiver operating characteristic analysis, calibration curves, and decision curve analysis (DCA).

RESULTS

The habitat-based models, the Habitat2 and the combined model, demonstrated high area under the curve values of 0.960 and 0.957 in the training set, with similar performance observed in the validation set. Solid components of tumors were identified as key differentiators, with only one radiomics feature from cystic regions retained in the final model. DCA indicated that habitat-based models provided significant clinical utility.

CONCLUSIONS

Habitat-based radiomics model was developed and validated for accurately preoperative differentiation between SBOTs and SMOTs, emphasizing the importance of solid tumor regions for accurate diagnosis.

摘要

目的

评估基于瘤内微环境的影像组学在鉴别早期浆液性交界性卵巢肿瘤(SBOT)与浆液性恶性卵巢肿瘤(SMOT)中的有效性,从而提高诊断准确性和治疗策略。

方法

我们对2017年12月至2021年2月期间210例经组织病理学确诊的SBOT(n = 95)和SMOT(n = 115)患者进行了回顾性分析。获取多排螺旋CT图像并使用基于瘤内微环境的影像组学进行分析,该方法根据Hounsfield单位值将肿瘤分割为不同的微环境。评估临床特征和影像特征,并使用逻辑回归建立预测模型。通过受试者工作特征分析、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

基于瘤内微环境的模型,即Habitat2模型和联合模型,在训练集中的曲线下面积值分别为0.960和0.957,在验证集中观察到类似的性能。肿瘤的实性成分被确定为关键鉴别因素,最终模型中仅保留了来自囊性区域的一个影像组学特征。DCA表明基于瘤内微环境的模型具有显著的临床实用性。

结论

开发并验证了基于瘤内微环境的影像组学模型,用于术前准确鉴别SBOT和SMOT,强调了实体瘤区域对准确诊断的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d259/12129802/7e77f47db033/fonc-15-1559398-g001.jpg

相似文献

4
MDCT-Based Radiomics Features for the Differentiation of Serous Borderline Ovarian Tumors and Serous Malignant Ovarian Tumors.
Cancer Manag Res. 2021 Jan 12;13:329-336. doi: 10.2147/CMAR.S284220. eCollection 2021.
7
Application Values of 2D and 3D Radiomics Models Based on CT Plain Scan in Differentiating Benign from Malignant Ovarian Tumors.
Biomed Res Int. 2022 Feb 17;2022:5952296. doi: 10.1155/2022/5952296. eCollection 2022.
9
Radiomics analysis of ultrasound images to discriminate between benign and malignant adnexal masses with solid morphology on ultrasound.
Ultrasound Obstet Gynecol. 2025 Mar;65(3):353-363. doi: 10.1002/uog.27680. Epub 2025 Feb 2.
10
Multitask prediction models for serous ovarian cancer by preoperative CT image assessments based on radiomics.
Front Med (Lausanne). 2024 Feb 6;11:1334062. doi: 10.3389/fmed.2024.1334062. eCollection 2024.

本文引用的文献

1
Giant ovarian solid and cystic masses mixed with three types of tumors: A rare case report and literature review.
Heliyon. 2024 Jul 23;10(15):e35075. doi: 10.1016/j.heliyon.2024.e35075. eCollection 2024 Aug 15.
4
A Comprehensive Review of Screening Methods for Ovarian Masses: Towards Earlier Detection.
Cureus. 2023 Nov 8;15(11):e48534. doi: 10.7759/cureus.48534. eCollection 2023 Nov.
5
Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study.
Front Oncol. 2023 Oct 26;13:1252074. doi: 10.3389/fonc.2023.1252074. eCollection 2023.
6
Prospective clinical research of radiomics and deep learning in oncology: A translational review.
Crit Rev Oncol Hematol. 2022 Nov;179:103823. doi: 10.1016/j.critrevonc.2022.103823. Epub 2022 Sep 21.
8
Serous borderline ovarian tumours: an extensive review on MR imaging features.
Br J Radiol. 2021 Sep 1;94(1125):20210116. doi: 10.1259/bjr.20210116. Epub 2021 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验