Stevens J, Szombati D, Maffei M, Elouard C, Assouly R, Cottet N, Dassonneville R, Ficheux Q, Zeppetzauer S, Bienfait A, Jordan A N, Auffèves A, Huard B
Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France.
Phys Rev Lett. 2022 Sep 9;129(11):110601. doi: 10.1103/PhysRevLett.129.110601.
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubit and the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive's energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.
量子比特是物理实体,因此量子门不仅作用于量子比特携带的信息,还作用于其能量。那么,在量子比特和实现该门的控制器之间相应的能量流动是怎样的呢?在这里,我们利用一个超导平台来回答这个问题,该问题是关于由共振驱动场实现的量子门的情况。在门操作期间,超导量子比特与微波驱动脉冲纠缠在一起,从而在能量流之间存在量子叠加。我们根据投影量子比特测量的结果来测量驱动场中的能量变化。我们证明,与测量反作用相关的驱动能量变化远远超过量子比特能够提取的能量。通过将量子比特视为驱动场的弱测量装置,可以理解这一点。