Salwan Richa, Sharma Vivek, Das Surajit
College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP)- 177 001, India.
University Centre for Research and Development, Chandigarh University (PB)-140413, India.
Curr Protein Pept Sci. 2022;23(12):874-882. doi: 10.2174/1389203723666220921154409.
Microbial nitrilases play a vital role in the biodegradation of nitrilecontaining pollutants, effluent treatments in chemical and textile industries, and the biosynthesis of Indole-3-acetic acid (IAA) from tryptophan in plants. However, the lack of structural information limits the correlation between its activity and substrate specificity.
The present study involves the genome mining of bacteria for the distribution and diversity of nitrilases, their phylogenetic analysis and structural characterization for motifs/ domains, followed by interaction with substrates.
Here, we mined the bacterial genomes for nitrilases and correlated their functions to hypothetical, uncharacterized, or putative ones. The comparative genomics revealed four AcNit, As7Nit, Cn5Nit and Cn9Nit predicted nitrilases encoding genes as uncharacterized subgroups of the nitrilase superfamily. The annotation of these nitrilases encoding genes revealed relatedness with nitrilase hydratases and cyanoalanine hydratases. At the proteomics level, the motif analysis of these protein sequences predicted a single motif of 20-28 aa, with glutamate (E), lysine (K) and cysteine (C) residues as a part of catalytic triad along with several other residues at the active site. The structural analysis of the nitrilases revealed geometrical and close conformation in the form of α-helices and β-sheets arranged in a sandwich structure. The catalytic residues constituted the substrate binding pocket and exhibited the broad nitrile substrate spectra for aromatic and aliphatic nitriles-containing compounds. The aromatic amino acid residues Y159 in the active site were predicted to be responsible for substrate specificity. The substitution of non-aromatic alanine residue in place of Y159 completely disrupted the catalytic activity for indole-3-acetonitrile (IAN).
The present study reports genome mining and simulation of structure-function relationship for uncharacterized bacterial nitrilases and their role in the biodegradation of pollutants and xenobiotics, which could be of applications in different industrial sectors.
微生物腈水解酶在含腈污染物的生物降解、化学和纺织工业的废水处理以及植物中由色氨酸生物合成吲哚 - 3 - 乙酸(IAA)过程中发挥着至关重要的作用。然而,缺乏结构信息限制了其活性与底物特异性之间的关联。
本研究涉及对细菌基因组进行挖掘,以了解腈水解酶的分布和多样性,对其进行系统发育分析以及基序/结构域的结构表征,随后研究其与底物的相互作用。
在此,我们对细菌基因组进行了腈水解酶挖掘,并将其功能与假设的、未表征的或推定的功能相关联。比较基因组学揭示了四个预测的腈水解酶编码基因AcNit、As7Nit、Cn5Nit和Cn9Nit,它们是腈水解酶超家族的未表征亚组。对这些腈水解酶编码基因的注释显示与腈水解酶水合酶和氰基丙氨酸水合酶有关联。在蛋白质组学水平上,对这些蛋白质序列的基序分析预测了一个20 - 28个氨基酸的单一基序,其中谷氨酸(E)、赖氨酸(K)和半胱氨酸(C)残基作为催化三联体的一部分,以及活性位点的其他几个残基。腈水解酶的结构分析揭示了以α螺旋和β折叠形式排列成三明治结构的几何形状和紧密构象。催化残基构成了底物结合口袋,并对含芳香族和脂肪族腈的化合物表现出广泛的腈底物谱。活性位点中的芳香族氨基酸残基Y159被预测负责底物特异性。用非芳香族丙氨酸残基取代Y159完全破坏了对吲哚 - 3 - 乙腈(IAN)的催化活性。
本研究报告了对未表征细菌腈水解酶的基因组挖掘以及结构 - 功能关系的模拟,及其在污染物和异生物质生物降解中的作用,这可能在不同工业领域具有应用价值。