Suppr超能文献

RCMNet:一种用于白血病的 CAR-T 疗法的深度学习模型。

RCMNet: A deep learning model assists CAR-T therapy for leukemia.

机构信息

Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Precision Medicine and Public Health, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong 518055, China.

The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

出版信息

Comput Biol Med. 2022 Nov;150:106084. doi: 10.1016/j.compbiomed.2022.106084. Epub 2022 Sep 11.

Abstract

Acute leukemia is a type of blood cancer with a high mortality rate. Current therapeutic methods include bone marrow transplantation, supportive therapy, and chemotherapy. Although a satisfactory remission of the disease can be achieved, the risk of recurrence is still high. Therefore, novel treatments are demanding. Chimeric antigen receptor-T (CAR-T) therapy has emerged as a promising approach to treating and curing acute leukemia. To harness the therapeutic potential of CAR-T cell therapy for blood diseases, reliable cell morphological identification is crucial. Nevertheless, the identification of CAR-T cells is a big challenge posed by their phenotypic similarity with other blood cells. To address this substantial clinical challenge, herein we first construct a CAR-T dataset with 500 original microscopy images after staining. Following that, we create a novel integrated model called RCMNet (ResNet18 with Convolutional Block Attention Module and Multi-Head Self-Attention) that combines the convolutional neural network (CNN) and Transformer. The model shows 99.63% top-1 accuracy on the public dataset. Compared with previous reports, our model obtains satisfactory results for image classification. Although testing on the CAR-T cell dataset, a decent performance is observed, which is attributed to the limited size of the dataset. Transfer learning is adapted for RCMNet and a maximum of 83.36% accuracy is achieved, which is higher than that of other state-of-the-art models. This study evaluates the effectiveness of RCMNet on a big public dataset and translates it to a clinical dataset for diagnostic applications.

摘要

急性白血病是一种死亡率较高的血癌。目前的治疗方法包括骨髓移植、支持治疗和化疗。虽然可以达到满意的疾病缓解,但复发的风险仍然很高。因此,需要新的治疗方法。嵌合抗原受体 T 细胞(CAR-T)疗法已成为治疗和治愈急性白血病的一种有前途的方法。为了利用 CAR-T 细胞疗法治疗血液疾病的治疗潜力,可靠的细胞形态学识别是至关重要的。然而,CAR-T 细胞的鉴定是一个巨大的挑战,因为它们与其他血细胞具有相似的表型。为了解决这一重大的临床挑战,我们首先构建了一个包含 500 张原始显微镜图像的 CAR-T 数据集,这些图像经过染色。在此基础上,我们创建了一个名为 RCMNet(带有卷积块注意力模块和多头自注意力的 ResNet18)的新型集成模型,该模型结合了卷积神经网络(CNN)和 Transformer。该模型在公共数据集上的 top-1 准确率达到 99.63%。与之前的报告相比,我们的模型在图像分类方面取得了令人满意的结果。虽然在 CAR-T 细胞数据集上进行了测试,但观察到了不错的性能,这归因于数据集的规模有限。我们对 RCMNet 进行了迁移学习,最高可达到 83.36%的准确率,高于其他最先进的模型。本研究评估了 RCMNet 在大型公共数据集上的有效性,并将其转化为临床数据集用于诊断应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验