Di Donglin, Zou Changqing, Feng Yifan, Zhou Haiyan, Ji Rongrong, Dai Qionghai, Gao Yue
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5800-5815. doi: 10.1109/TPAMI.2022.3209652. Epub 2023 Apr 3.
Patient survival prediction based on gigapixel whole-slide histopathological images (WSIs) has become increasingly prevalent in recent years. A key challenge of this task is achieving an informative survival-specific global representation from those WSIs with highly complicated data correlation. This article proposes a multi-hypergraph based learning framework, called "HGSurvNet," to tackle this challenge. HGSurvNet achieves an effective high-order global representation of WSIs via multilateral correlation modeling in multiple spaces and a general hypergraph convolution network. It has the ability to alleviate over-fitting issues caused by the lack of training data by using a new convolution structure called hypergraph max-mask convolution. Extensive validation experiments were conducted on three widely-used carcinoma datasets: Lung Squamous Cell Carcinoma (LUSC), Glioblastoma Multiforme (GBM), and National Lung Screening Trial (NLST). Quantitative analysis demonstrated that the proposed method consistently outperforms state-of-the-art methods, coupled with the Bayesian Concordance Readjust loss. We also demonstrate the individual effectiveness of each module of the proposed framework and its application potential for pathology diagnosis and reporting empowered by its interpretability potential.
近年来,基于千兆像素全切片组织病理学图像(WSIs)的患者生存预测变得越来越普遍。这项任务的一个关键挑战是从那些具有高度复杂数据相关性的WSIs中获得一个信息丰富的特定生存全局表示。本文提出了一种基于多超图的学习框架,称为“HGSurvNet”,以应对这一挑战。HGSurvNet通过在多个空间中的多边相关性建模和一个通用的超图卷积网络,实现了WSIs的有效高阶全局表示。它能够通过使用一种称为超图最大掩码卷积的新卷积结构来缓解由于缺乏训练数据而导致的过拟合问题。在三个广泛使用的癌症数据集上进行了广泛的验证实验:肺鳞状细胞癌(LUSC)、多形性胶质母细胞瘤(GBM)和国家肺癌筛查试验(NLST)。定量分析表明,所提出的方法与贝叶斯一致性调整损失相结合,始终优于现有方法。我们还展示了所提出框架的每个模块的个体有效性及其在病理学诊断和报告中的应用潜力,其具有可解释性潜力。