Suppr超能文献

利用神经网络学习基于认知测试的可解释规则,用于预测和早期诊断痴呆症。

Learning Cognitive-Test-Based Interpretable Rules for Prediction and Early Diagnosis of Dementia Using Neural Networks.

机构信息

Department of Computer Science and Technology, Tsinghua University, Beijing, P.R. China.

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan 1st, Dongcheng District, Beijing, P.R. China.

出版信息

J Alzheimers Dis. 2022;90(2):609-624. doi: 10.3233/JAD-220502.

Abstract

BACKGROUND

Accurate, cheap, and easy to promote methods for dementia prediction and early diagnosis are urgently needed in low- and middle-income countries. Integrating various cognitive tests using machine learning provides promising solutions. However, most effective machine learning models are black-box models that are hard to understand for doctors and could hide potential biases and risks.

OBJECTIVE

To apply cognitive-test-based machine learning models in practical dementia prediction and diagnosis by ensuring both interpretability and accuracy.

METHODS

We design a framework adopting Rule-based Representation Learner (RRL) to build interpretable diagnostic rules based on the cognitive tests selected by doctors. According to the visualization and test results, doctors can easily select the final rules after analysis and trade-off. Our framework is verified on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (n = 606) and Peking Union Medical College Hospital (PUMCH) dataset (n = 375).

RESULTS

The predictive or diagnostic rules learned by RRL offer a better trade-off between accuracy and model interpretability than other representative machine learning models. For mild cognitive impairment (MCI) conversion prediction, the cognitive-test-based rules achieve an average area under the curve (AUC) of 0.904 on ADNI. For dementia diagnosis on subjects with a normal Mini-Mental State Exam (MMSE) score, the learned rules achieve an AUC of 0.863 on PUMCH. The visualization analyses also verify the good interpretability of the learned rules.

CONCLUSION

With the help of doctors and RRL, we can obtain predictive and diagnostic rules for dementia with high accuracy and good interpretability even if only cognitive tests are used.

摘要

背景

在中低收入国家,迫切需要准确、廉价且易于推广的痴呆症预测和早期诊断方法。使用机器学习整合各种认知测试提供了有希望的解决方案。然而,大多数有效的机器学习模型都是黑盒模型,医生难以理解,并且可能隐藏潜在的偏差和风险。

目的

通过确保可解释性和准确性,将基于认知测试的机器学习模型应用于实际的痴呆症预测和诊断中。

方法

我们设计了一个采用基于规则的表示学习器(RRL)的框架,以根据医生选择的认知测试构建可解释的诊断规则。根据可视化和测试结果,医生可以在分析和权衡后轻松选择最终规则。我们的框架在阿尔茨海默病神经影像学倡议(ADNI)数据集(n=606)和北京协和医学院医院(PUMCH)数据集(n=375)上进行了验证。

结果

RRL 学习的预测或诊断规则在准确性和模型可解释性之间提供了更好的权衡。对于轻度认知障碍(MCI)转换预测,基于认知测试的规则在 ADNI 上的平均曲线下面积(AUC)为 0.904。对于 MMSE 评分正常的痴呆症诊断,学习到的规则在 PUMCH 上的 AUC 为 0.863。可视化分析也验证了学习规则的良好可解释性。

结论

在医生和 RRL 的帮助下,即使仅使用认知测试,我们也可以获得具有高准确性和良好可解释性的痴呆症预测和诊断规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验