Suppr超能文献

深度学习与轻度认知障碍和阿尔茨海默病的风险评分分类。

Deep Learning and Risk Score Classification of Mild Cognitive Impairment and Alzheimer's Disease.

机构信息

Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

J Alzheimers Dis. 2021;80(3):1079-1090. doi: 10.3233/JAD-201438.

Abstract

BACKGROUND

Many neurocognitive and neuropsychological tests are used to classify early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer's disease (AD) from cognitive normal (CN). This can make it challenging for clinicians to make efficient and objective clinical diagnoses. It is possible to reduce the number of variables needed to make a reasonably accurate classification using machine learning.

OBJECTIVE

The goal of this study was to develop a deep learning algorithm to identify a few significant neurocognitive tests that can accurately classify these four groups. We also derived a simplified risk-stratification score model for diagnosis.

METHODS

Over 100 variables that included neuropsychological/neurocognitive tests, demographics, genetic factors, and blood biomarkers were collected from 383 EMCI, 644 LMCI, 394 AD patients, and 516 cognitive normal from the Alzheimer's Disease Neuroimaging Initiative database. A neural network algorithm was trained on data split 90% for training and 10% testing using 10-fold cross-validation. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis. We also evaluated five different feature selection methods.

RESULTS

The five feature selection methods consistently yielded the top classifiers to be the Clinical Dementia Rating Scale - Sum of Boxes, Delayed total recall, Modified Preclinical Alzheimer Cognitive Composite with Trails test, Modified Preclinical Alzheimer Cognitive Composite with Digit test, and Mini-Mental State Examination. The best classification model yielded an AUC of 0.984, and the simplified risk-stratification score yielded an AUC of 0.963 on the test dataset.

CONCLUSION

The deep-learning algorithm and simplified risk score accurately classifies EMCI, LMCI, AD and CN patients using a few common neurocognitive tests.

摘要

背景

许多神经认知和神经心理学测试被用于将早期轻度认知障碍(EMCI)、晚期轻度认知障碍(LMCI)和阿尔茨海默病(AD)从认知正常(CN)中分类。这使得临床医生难以进行高效和客观的临床诊断。使用机器学习可以减少进行合理准确分类所需的变量数量。

目的

本研究旨在开发一种深度学习算法,以识别少数能够准确分类这四组的重要神经认知测试。我们还推导了一种简化的风险分层评分模型用于诊断。

方法

从阿尔茨海默病神经影像学倡议数据库中收集了 383 名 EMCI、644 名 LMCI、394 名 AD 患者和 516 名认知正常者的 100 多个变量,包括神经心理学/神经认知测试、人口统计学、遗传因素和血液生物标志物。使用 10 折交叉验证,神经网络算法在 90%的数据分割用于训练和 10%的数据分割用于测试进行训练。使用接收者操作特征分析的曲线下面积(AUC)来评估预测性能。我们还评估了五种不同的特征选择方法。

结果

五种特征选择方法一致地确定了最佳分类器,分别为临床痴呆评定量表-总和框、延迟总回忆、改良临床前阿尔茨海默认知综合测试与轨迹测试、改良临床前阿尔茨海默认知综合测试与数字测试、和简易精神状态检查。最佳分类模型在测试数据集上的 AUC 为 0.984,简化风险评分的 AUC 为 0.963。

结论

深度学习算法和简化的风险评分使用少数常见的神经认知测试准确地对 EMCI、LMCI、AD 和 CN 患者进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验