文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进深度残差卷积神经网络的植物叶片病害检测方法。

An Improved Deep Residual Convolutional Neural Network for Plant Leaf Disease Detection.

机构信息

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, India.

School of Computing and Information Technology, Reva University, Bengaluru, India.

出版信息

Comput Intell Neurosci. 2022 Sep 14;2022:5102290. doi: 10.1155/2022/5102290. eCollection 2022.


DOI:10.1155/2022/5102290
PMID:36156945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9492343/
Abstract

In this research, we proposed a novel deep residual convolutional neural network with 197 layers (ResNet197) for the detection of various plant leaf diseases. Six blocks of layers were used to develop ResNet197. ResNet197 was trained and tested using a combined plant leaf disease image dataset. Scaling, cropping, flipping, padding, rotation, affine transformation, saturation, and hue transformation techniques were used to create the augmentation data of the plant leaf disease image dataset. The dataset consisted of 103 diseased and healthy image classes of 22 plants and 154,500 images of healthy and diseased plant leaves. The evolutionary search technique was used to optimise the layers and hyperparameter values of ResNet197. ResNet197 was trained on the combined plant leaf disease image dataset using a graphics processing unit (GPU) environment for 1000 epochs. It produced a 99.58 percentage average classification accuracy on the test dataset. The experimental results were superior to existing ResNet architectures and recent transfer learning techniques.

摘要

在这项研究中,我们提出了一种具有 197 层的新型深度残差卷积神经网络(ResNet197),用于检测各种植物叶片病害。使用六个层块来开发 ResNet197。使用组合的植物叶片病害图像数据集对 ResNet197 进行训练和测试。使用缩放、裁剪、翻转、填充、旋转、仿射变换、饱和度和色调变换技术来创建植物叶片病害图像数据集的扩充数据。该数据集由 22 种植物的 103 个患病和健康图像类以及 154,500 张健康和患病植物叶片图像组成。使用进化搜索技术来优化 ResNet197 的层和超参数值。使用图形处理单元(GPU)环境在组合的植物叶片病害图像数据集上对 ResNet197 进行了 1000 个时期的训练。它在测试数据集上产生了 99.58%的平均分类准确率。实验结果优于现有的 ResNet 架构和最近的迁移学习技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/bfa2b37279ca/CIN2022-5102290.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/d2966b22221a/CIN2022-5102290.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/9242e19610f6/CIN2022-5102290.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/80b892cfe8b8/CIN2022-5102290.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/968d08f830c2/CIN2022-5102290.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/ba2f8cbee01b/CIN2022-5102290.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/bfa2b37279ca/CIN2022-5102290.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/d2966b22221a/CIN2022-5102290.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/9242e19610f6/CIN2022-5102290.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/80b892cfe8b8/CIN2022-5102290.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/968d08f830c2/CIN2022-5102290.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/ba2f8cbee01b/CIN2022-5102290.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4317/9492343/bfa2b37279ca/CIN2022-5102290.006.jpg

相似文献

[1]
An Improved Deep Residual Convolutional Neural Network for Plant Leaf Disease Detection.

Comput Intell Neurosci. 2022

[2]
Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[3]
A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.

Sensors (Basel). 2021-7-12

[4]
Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network.

Sensors (Basel). 2019-9-25

[5]
A deep learning generative model approach for image synthesis of plant leaves.

PLoS One. 2022

[6]
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

Comput Intell Neurosci. 2016

[7]
Dense Convolutional Neural Network-Based Deep Learning Pipeline for Pre-Identification of Circular Leaf Spot Disease of Leaves Using Optical Coherence Tomography.

Sensors (Basel). 2024-8-21

[8]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

[9]
Recognition of Leaf Disease Using Hybrid Convolutional Neural Network by Applying Feature Reduction.

Sensors (Basel). 2022-1-12

[10]
Recognition of peripheral blood cell images using convolutional neural networks.

Comput Methods Programs Biomed. 2019-8-9

引用本文的文献

[1]
A review of plant leaf disease identification by deep learning algorithms.

Front Plant Sci. 2025-8-20

[2]
YOLO-TPS: A Multi-Module Synergistic High-Precision Fish-Disease Detection Model for Complex Aquaculture Environments.

Animals (Basel). 2025-8-11

[3]
VCNet: Optimized Deep Learning framework with deep feature extraction and genetic algorithm for multiclass rice crop disease detection.

MethodsX. 2025-8-5

[4]
Classification of tomato leaf disease using Transductive Long Short-Term Memory with an attention mechanism.

Front Plant Sci. 2025-1-21

[5]
A Review of CNN Applications in Smart Agriculture Using Multimodal Data.

Sensors (Basel). 2025-1-15

[6]
A lightweight MHDI-DETR model for detecting grape leaf diseases.

Front Plant Sci. 2024-12-6

[7]
Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

本文引用的文献

[1]
Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network.

Sensors (Basel). 2021-11-30

[2]
IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet.

Sensors (Basel). 2021-8-9

[3]
A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.

Sensors (Basel). 2021-7-12

[4]
Identification of Cotton Leaf Lesions Using Deep Learning Techniques.

Sensors (Basel). 2021-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索