文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的实时番茄病虫害识别稳健探测器。

A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

机构信息

Department of Electronics Engineering, Chonbuk National University, Jeonbuk 54896, Korea.

Research Institute of Realistic Media and Technology, Mokpo National University, Jeonnam 534-729, Korea.

出版信息

Sensors (Basel). 2017 Sep 4;17(9):2022. doi: 10.3390/s17092022.


DOI:10.3390/s17092022
PMID:28869539
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5620500/
Abstract

Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

摘要

植物病虫害是农业领域的主要挑战。准确、快速地检测植物病虫害有助于开发早期治疗技术,同时大幅减少经济损失。深度学习网络的最新发展使得研究人员能够极大地提高目标检测和识别系统的准确性。在本文中,我们提出了一种基于深度学习的方法,使用各种分辨率的摄像设备拍摄的图像来检测番茄植株上的病虫害。我们的目标是找到更适合我们任务的深度学习架构。因此,我们考虑了三种主要的检测器家族:基于快速区域的卷积神经网络(Faster R-CNN)、基于区域的全卷积网络(R-FCN)和单发多盒检测器(SSD),在这项工作中,它们被称为“深度学习元架构”。我们将这些元架构中的每一个与“深度特征提取器”(如 VGG 网络和 Residual Network(ResNet))结合使用。我们展示了深度学习元架构和特征提取器的性能,此外还提出了一种用于局部和全局类注释和数据增强的方法,以提高准确性并减少训练过程中的误报数量。我们在我们的大型番茄病虫害数据集上进行了端到端的训练和测试,该数据集包含具有病虫害的具有挑战性的图像,包括几种内外类别的变化,如感染状态和在植物中的位置。实验结果表明,我们提出的系统能够有效地识别九种不同类型的病虫害,并能够处理来自植物周围环境的复杂场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/7976247b6914/sensors-17-02022-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/28c9741b4ecb/sensors-17-02022-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/f0d8fe9971ed/sensors-17-02022-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/d72b97d6e721/sensors-17-02022-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/dbbc57c80372/sensors-17-02022-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/b7ce7f6b4d53/sensors-17-02022-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/055812dcf08f/sensors-17-02022-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/b8ab94b0a637/sensors-17-02022-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/e73ca0acafcf/sensors-17-02022-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/28b88dd53f80/sensors-17-02022-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/7976247b6914/sensors-17-02022-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/28c9741b4ecb/sensors-17-02022-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/f0d8fe9971ed/sensors-17-02022-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/d72b97d6e721/sensors-17-02022-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/dbbc57c80372/sensors-17-02022-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/b7ce7f6b4d53/sensors-17-02022-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/055812dcf08f/sensors-17-02022-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/b8ab94b0a637/sensors-17-02022-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/e73ca0acafcf/sensors-17-02022-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/28b88dd53f80/sensors-17-02022-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef43/5620500/7976247b6914/sensors-17-02022-g010.jpg

相似文献

[1]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

[2]
Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques.

Comput Intell Neurosci. 2019-12-16

[3]
Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer.

Sensors (Basel). 2020-4-23

[4]
A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network.

Sensors (Basel). 2020-1-21

[5]
White blood cells detection and classification based on regional convolutional neural networks.

Med Hypotheses. 2020-2

[6]
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network.

Front Plant Sci. 2020-6-16

[7]
Deep learning based real-time tourist spots detection and recognition mechanism.

Sci Prog. 2021-9

[8]
An adaptive ensemble deep learning framework for reliable detection of pandemic patients.

Comput Biol Med. 2024-1

[9]
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Gigascience. 2019-11-1

[10]
EResNet-SVM: an overfitting-relieved deep learning model for recognition of plant diseases and pests.

J Sci Food Agric. 2024-8-15

引用本文的文献

[1]
GhostConv+CA-YOLOv8n: a lightweight network for rice pest detection based on the aggregation of low-level features in real-world complex backgrounds.

Front Plant Sci. 2025-8-13

[2]
A lightweight and explainable CNN model for empowering plant disease diagnosis.

Sci Rep. 2025-8-21

[3]
YOLOv8-DBW: An Improved YOLOv8-Based Algorithm for Maize Leaf Diseases and Pests Detection.

Sensors (Basel). 2025-7-22

[4]
Deep learning-based automatic diagnosis of rice leaf diseases using ensemble CNN models.

Sci Rep. 2025-7-29

[5]
Comprehensive plant health monitoring: expert-level assessment with spatio-temporal image data.

Front Plant Sci. 2025-5-30

[6]
YOLO-ODD: an improved YOLOv8s model for onion foliar disease detection.

Front Plant Sci. 2025-5-22

[7]
FFAE-UNet: An Efficient Pear Leaf Disease Segmentation Network Based on U-Shaped Architecture.

Sensors (Basel). 2025-3-12

[8]
Identification of non-glandular trichome hairs in cannabis using vision-based deep learning methods.

J Forensic Sci. 2025-7

[9]
A compact deep learning approach integrating depthwise convolutions and spatial attention for plant disease classification.

Plant Methods. 2025-4-2

[10]
Detection of cotton crops diseases using customized deep learning model.

Sci Rep. 2025-3-28

本文引用的文献

[1]
Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.

Comput Intell Neurosci. 2017

[2]
Signature Optical Cues: Emerging Technologies for Monitoring Plant Health.

Sensors (Basel). 2008-5-16

[3]
Electrochemical Determination of Low Molecular Mass Thiols Content in Potatoes (Solanum tuberosum) Cultivated in the Presence of Various Sulphur Forms and Infected by Late Blight (Phytophora infestans).

Sensors (Basel). 2008-5-15

[4]
Pathogen Phytosensing: Plants to Report Plant Pathogens.

Sensors (Basel). 2008-4-14

[5]
Assessing Steady-state Fluorescence and PRI from Hyperspectral Proximal Sensing as Early Indicators of Plant Stress: The Case of Ozone Exposure.

Sensors (Basel). 2008-3-13

[6]
Using Deep Learning for Image-Based Plant Disease Detection.

Front Plant Sci. 2016-9-22

[7]
Ongoing geographical spread of Tomato yellow leaf curl virus.

Virology. 2016-11

[8]
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

Comput Intell Neurosci. 2016

[9]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[10]
Pathogen sensors.

Sensors (Basel). 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索