文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用改进的深度卷积神经网络检测茶叶灰斑病

Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.

Department of Bio-Technology, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, India.

出版信息

Comput Intell Neurosci. 2023 Jan 17;2023:7876302. doi: 10.1155/2023/7876302. eCollection 2023.


DOI:10.1155/2023/7876302
PMID:36703994
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9873464/
Abstract

We proposed a novel deep convolutional neural network (DCNN) using inverted residuals and linear bottleneck layers for diagnosing grey blight disease on tea leaves. The proposed DCNN consists of three bottleneck blocks, two pairs of convolutional (Conv) layers, and three dense layers. The bottleneck blocks contain depthwise, standard, and linear convolution layers. A single-lens reflex digital image camera was used to collect 1320 images of tea leaves from the North Bengal region of India for preparing the tea grey blight disease dataset. The nongrey blight diseased tea leaf images in the dataset were categorized into two subclasses, such as healthy and other diseased leaves. Image transformation techniques such as principal component analysis (PCA) color, random rotations, random shifts, random flips, resizing, and rescaling were used to generate augmented images of tea leaves. The augmentation techniques enhanced the dataset size from 1320 images to 5280 images. The proposed DCNN model was trained and validated on 5016 images of healthy, grey blight infected, and other diseased tea leaves. The classification performance of the proposed and existing state-of-the-art techniques were tested using 264 tea leaf images. Classification accuracy, precision, recall, measure, and misclassification rates of the proposed DCNN are 98.99%, 98.51%, 98.48%, 98.49%, and 1.01%, respectively, on test data. The test results show that the proposed DCNN model performed superior to the existing techniques for tea grey blight disease detection.

摘要

我们提出了一种新的基于反卷积残差和线性瓶颈层的深度卷积神经网络(DCNN),用于诊断茶叶上的灰斑病。所提出的 DCNN 由三个瓶颈块、两对卷积(Conv)层和三个密集层组成。瓶颈块包含深度卷积、标准卷积和线性卷积层。使用单镜头反射式数字图像相机从印度北孟加拉地区采集了 1320 张茶叶图像,用于准备茶叶灰斑病数据集。数据集中的非灰斑病茶叶图像被分为两类,即健康和其他患病叶片。使用主成分分析(PCA)颜色、随机旋转、随机移位、随机翻转、调整大小和重新缩放等图像变换技术生成茶叶的扩充图像。扩充技术将数据集大小从 1320 张图像增加到 5280 张图像。在 5016 张健康、感染灰斑病和其他患病茶叶的图像上对所提出的 DCNN 模型进行了训练和验证。使用 264 张茶叶图像测试了所提出的和现有的最先进技术的分类性能。在所提出的 DCNN 上,测试数据的分类准确率、精度、召回率、F1 分数和误分类率分别为 98.99%、98.51%、98.48%、98.49%和 1.01%。测试结果表明,所提出的 DCNN 模型在茶叶灰斑病检测方面优于现有的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/f0f00a418904/CIN2023-7876302.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/89f0bb9ce9a0/CIN2023-7876302.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/013bc1b96293/CIN2023-7876302.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/66658170df80/CIN2023-7876302.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/5b179dbe19a5/CIN2023-7876302.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/1108e4f0e532/CIN2023-7876302.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/20da7f80b1a3/CIN2023-7876302.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/526d159dd449/CIN2023-7876302.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/ae2a55552028/CIN2023-7876302.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/26396dc8fd72/CIN2023-7876302.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/9ba4a9e25301/CIN2023-7876302.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/f65b5b593167/CIN2023-7876302.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/6f7cd74623d0/CIN2023-7876302.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/628f0ad866a2/CIN2023-7876302.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/d99bd8a0e05a/CIN2023-7876302.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/f0f00a418904/CIN2023-7876302.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/89f0bb9ce9a0/CIN2023-7876302.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/013bc1b96293/CIN2023-7876302.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/66658170df80/CIN2023-7876302.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/5b179dbe19a5/CIN2023-7876302.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/1108e4f0e532/CIN2023-7876302.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/20da7f80b1a3/CIN2023-7876302.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/526d159dd449/CIN2023-7876302.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/ae2a55552028/CIN2023-7876302.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/26396dc8fd72/CIN2023-7876302.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/9ba4a9e25301/CIN2023-7876302.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/f65b5b593167/CIN2023-7876302.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/6f7cd74623d0/CIN2023-7876302.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/628f0ad866a2/CIN2023-7876302.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/d99bd8a0e05a/CIN2023-7876302.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5566/9873464/f0f00a418904/CIN2023-7876302.015.jpg

相似文献

[1]
Grey Blight Disease Detection on Tea Leaves Using Improved Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[2]
Automated detection of selected tea leaf diseases in Bangladesh with convolutional neural network.

Sci Rep. 2024-6-18

[3]
An Improved Deep Residual Convolutional Neural Network for Plant Leaf Disease Detection.

Comput Intell Neurosci. 2022

[4]
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

Sci Rep. 2023-4-13

[5]
Effect of augmented datasets on deep convolutional neural networks applied to chest radiographs.

Clin Radiol. 2019-6-10

[6]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

[7]
Multiclass classification of diseased grape leaf identification using deep convolutional neural network(DCNN) classifier.

Sci Rep. 2024-4-18

[8]
Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.

Med Phys. 2016-12

[9]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[10]
An improved deep convolutional neural network architecture for chromosome abnormality detection using hybrid optimization model.

Microsc Res Tech. 2022-9

引用本文的文献

[1]
Towards precision agriculture tea leaf disease detection using CNNs and image processing.

Sci Rep. 2025-5-21

[2]
TeaDiseaseNet: multi-scale self-attentive tea disease detection.

Front Plant Sci. 2023-10-11

本文引用的文献

[1]
An Improved Deep Residual Convolutional Neural Network for Plant Leaf Disease Detection.

Comput Intell Neurosci. 2022

[2]
Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy.

Sensors (Basel). 2022-4-13

[3]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

[4]
A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.

Sensors (Basel). 2021-7-12

[5]
Cryptic Diversity, Molecular Systematics, and Pathogenicity of Genus and Allied Genera Causing Gray Blight Disease of Tea in Taiwan, With a Description of a New Species.

Plant Dis. 2021-2

[6]
Pestalotiopsis-Like Species Causing Gray Blight Disease on Camellia sinensis in China.

Plant Dis. 2017-10-23

[7]
Patch-Based Principal Component Analysis for Face Recognition.

Comput Intell Neurosci. 2017

[8]
Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China.

Sci Rep. 2017-4-13

[9]
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

Comput Intell Neurosci. 2016

[10]
Pestalotiopsis revisited.

Stud Mycol. 2014-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索