School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.
Department of Bio-Technology, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, India.
Comput Intell Neurosci. 2023 Jan 17;2023:7876302. doi: 10.1155/2023/7876302. eCollection 2023.
We proposed a novel deep convolutional neural network (DCNN) using inverted residuals and linear bottleneck layers for diagnosing grey blight disease on tea leaves. The proposed DCNN consists of three bottleneck blocks, two pairs of convolutional (Conv) layers, and three dense layers. The bottleneck blocks contain depthwise, standard, and linear convolution layers. A single-lens reflex digital image camera was used to collect 1320 images of tea leaves from the North Bengal region of India for preparing the tea grey blight disease dataset. The nongrey blight diseased tea leaf images in the dataset were categorized into two subclasses, such as healthy and other diseased leaves. Image transformation techniques such as principal component analysis (PCA) color, random rotations, random shifts, random flips, resizing, and rescaling were used to generate augmented images of tea leaves. The augmentation techniques enhanced the dataset size from 1320 images to 5280 images. The proposed DCNN model was trained and validated on 5016 images of healthy, grey blight infected, and other diseased tea leaves. The classification performance of the proposed and existing state-of-the-art techniques were tested using 264 tea leaf images. Classification accuracy, precision, recall, measure, and misclassification rates of the proposed DCNN are 98.99%, 98.51%, 98.48%, 98.49%, and 1.01%, respectively, on test data. The test results show that the proposed DCNN model performed superior to the existing techniques for tea grey blight disease detection.
我们提出了一种新的基于反卷积残差和线性瓶颈层的深度卷积神经网络(DCNN),用于诊断茶叶上的灰斑病。所提出的 DCNN 由三个瓶颈块、两对卷积(Conv)层和三个密集层组成。瓶颈块包含深度卷积、标准卷积和线性卷积层。使用单镜头反射式数字图像相机从印度北孟加拉地区采集了 1320 张茶叶图像,用于准备茶叶灰斑病数据集。数据集中的非灰斑病茶叶图像被分为两类,即健康和其他患病叶片。使用主成分分析(PCA)颜色、随机旋转、随机移位、随机翻转、调整大小和重新缩放等图像变换技术生成茶叶的扩充图像。扩充技术将数据集大小从 1320 张图像增加到 5280 张图像。在 5016 张健康、感染灰斑病和其他患病茶叶的图像上对所提出的 DCNN 模型进行了训练和验证。使用 264 张茶叶图像测试了所提出的和现有的最先进技术的分类性能。在所提出的 DCNN 上,测试数据的分类准确率、精度、召回率、F1 分数和误分类率分别为 98.99%、98.51%、98.48%、98.49%和 1.01%。测试结果表明,所提出的 DCNN 模型在茶叶灰斑病检测方面优于现有的技术。
Comput Intell Neurosci. 2023
Comput Intell Neurosci. 2022
Sci Rep. 2023-4-13
Sensors (Basel). 2024-5-1
Front Plant Sci. 2023-10-11
Comput Intell Neurosci. 2022
Sensors (Basel). 2022-4-13
Sensors (Basel). 2021-7-12
Comput Intell Neurosci. 2017
Comput Intell Neurosci. 2016
Stud Mycol. 2014-9