Suppr超能文献

带检测和治疗率的分数阶埃博拉-疟疾合并感染模型。

Fractional-Order Ebola-Malaria Coinfection Model with a Focus on Detection and Treatment Rate.

机构信息

Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan 030024, China.

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

出版信息

Comput Math Methods Med. 2022 Sep 16;2022:6502598. doi: 10.1155/2022/6502598. eCollection 2022.

Abstract

Coinfection of Ebola virus and malaria is widespread, particularly in impoverished areas where malaria is already ubiquitous. Epidemics of Ebola virus disease arise on a sporadic basis in African nations with a high malaria burden. An observational study discovered that patients in Sierra Leone's Ebola treatment centers were routinely infected with malaria parasites, increasing the risk of death. In this paper, we study Ebola-malaria coinfections under the generalized Mittag-Leffler kernel fractional derivative. The Banach fixed point theorem and the Krasnoselskii type are used to analyse the model's existence and uniqueness. We discuss the model stability using the Hyers-Ulam functional analysis. The numerical scheme for the Ebola-malaria coinfections using Lagrange interpolation is presented. The numerical trajectories show that the prevalence of Ebola-malaria coinfections ranged from low to moderate depending on memory. This means that controlling the disease requires adequate knowledge of the past history of the dynamics of both malaria and Ebola. The graphical dynamics of the detection rate indicate that a variation in the detection rate only affects the following compartments: individuals that are latently infected with the Ebola, Ebola virus afflicted people who went unnoticed, individuals who have been infected with the Ebola virus and have been diagnosed with the disease, and persons undergoing Ebola virus therapy.

摘要

埃博拉病毒和疟疾的合并感染很常见,特别是在疟疾已经普遍存在的贫困地区。在疟疾负担沉重的非洲国家,埃博拉病毒病的流行呈零星发生。一项观察性研究发现,塞拉利昂埃博拉治疗中心的患者经常感染疟原虫,增加了死亡的风险。在本文中,我们在广义 Mittag-Leffler 核分数导数下研究埃博拉-疟疾合并感染。利用巴拿赫不动点定理和 Krasnoselskii 型来分析模型的存在性和唯一性。我们利用 Hyers-Ulam 泛函分析来讨论模型的稳定性。采用拉格朗日插值法给出了埃博拉-疟疾合并感染的数值方案。数值轨迹表明,埃博拉-疟疾合并感染的流行程度取决于记忆,从低到中度不等。这意味着控制这种疾病需要充分了解疟疾和埃博拉病毒动态的过去历史。检测率的图形动力学表明,检测率的变化仅影响以下隔室:潜伏感染埃博拉的个体、未被发现的埃博拉病毒感染者、已感染埃博拉病毒且已被诊断出患有该疾病的个体以及正在接受埃博拉病毒治疗的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a6d/9507665/defe894afe96/CMMM2022-6502598.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验