Suppr超能文献

纳入治疗和预防策略的疟疾分数阶模型。

Fractional-order model of malaria incorporating treatment and prevention strategies.

作者信息

Agbata Benedict Celestine, Kovaci Sander, Agbebaku Dennis Ferdinand, Dervishi Raimonda, Abah Emmanuel, Mbah Godwin Christopher Ezike, Emadifar Homan, Smerat Aseel

机构信息

Department of Mathematics and Statistics, Faculty of Science, Confluence University of Science and Technology, Osara, Nigeria.

Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania.

出版信息

Sci Rep. 2025 Aug 11;15(1):29290. doi: 10.1038/s41598-025-14280-w.

Abstract

Malaria, a life-threatening disease responsible for millions of deaths worldwide, remains a major public health issue, especially in under-resourced regions. It is caused by Plasmodium parasites, transmitted through mosquito bites, and disproportionately affects vulnerable groups like children and pregnant women. To improve understanding and management of malaria transmission, we investigated different mathematical models, traditionally based on integer-order derivatives. In this study, we introduced a novel approach using a fractional-order mathematical model to evaluate how treatment strategies impact malaria's spread. Initially, we modeled limited treatment scenarios with integer-order nonlinear differential equations. However, recognizing the complexity of malaria dynamics, we enhanced the model with fractional-order derivatives and power laws to capture a more detailed picture of disease behavior. The research established conditions for solution existence and uniqueness within the fractional framework and assessed the stability of the endemic equilibrium using the Lyapunov function technique. A sensitivity analysis of the basic reproduction number identified key factors influencing malaria transmission. Using the fractional Adams-Bashforth-Moulton method, we simulated various scenarios to explore the effects of model parameters and fractional-order values. Visual tools like surface and contour plots helped illustrate the findings. The results showed that improving treatment strategies and implementing preventive measures, such as mosquito control and timely medication, significantly reduced malaria cases. On the other hand, factors like increased mosquito contact and ineffective treatments aggravated the disease's impact. This study provided valuable insights into malaria dynamics, highlighting the critical need for sustained efforts in treatment and prevention to mitigate its devastating effects on communities.

摘要

疟疾是一种危及生命的疾病,在全球造成数百万人死亡,仍然是一个重大的公共卫生问题,尤其是在资源匮乏地区。它由疟原虫引起,通过蚊虫叮咬传播,对儿童和孕妇等弱势群体的影响尤为严重。为了更好地理解和管理疟疾传播,我们研究了不同的数学模型,传统上这些模型基于整数阶导数。在本研究中,我们引入了一种新颖的方法,使用分数阶数学模型来评估治疗策略如何影响疟疾的传播。最初,我们用整数阶非线性微分方程对有限的治疗场景进行建模。然而,认识到疟疾动态的复杂性,我们用分数阶导数和幂律增强了模型,以更详细地描述疾病行为。该研究在分数阶框架内建立了解的存在性和唯一性条件,并使用李雅普诺夫函数技术评估了地方病平衡点的稳定性。对基本再生数的敏感性分析确定了影响疟疾传播的关键因素。使用分数阶亚当斯 - 巴什福思 - 莫尔顿方法,我们模拟了各种场景,以探索模型参数和分数阶值的影响。表面图和等高线图等可视化工具有助于说明研究结果。结果表明,改进治疗策略并实施预防措施,如蚊虫控制和及时用药,可显著减少疟疾病例。另一方面,蚊虫接触增加和治疗无效等因素加剧了疾病的影响。本研究为疟疾动态提供了有价值的见解,强调了持续开展治疗和预防工作以减轻其对社区的毁灭性影响的迫切需要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69bf/12339948/c2137a6b77b2/41598_2025_14280_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验