文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铁的生物地球化学循环的演变观点。

An evolving view on biogeochemical cycling of iron.

机构信息

Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany.

School of Earth Sciences, University of Bristol, Bristol, UK.

出版信息

Nat Rev Microbiol. 2021 Jun;19(6):360-374. doi: 10.1038/s41579-020-00502-7. Epub 2021 Feb 1.


DOI:10.1038/s41579-020-00502-7
PMID:33526911
Abstract

Biogeochemical cycling of iron is crucial to many environmental processes, such as ocean productivity, carbon storage, greenhouse gas emissions and the fate of nutrients, toxic metals and metalloids. Knowledge of the underlying processes involved in iron cycling has accelerated in recent years along with appreciation of the complex network of biotic and abiotic reactions dictating the speciation, mobility and reactivity of iron in the environment. Recent studies have provided insights into novel processes in the biogeochemical iron cycle such as microbial ammonium oxidation and methane oxidation coupled to Fe(III) reduction. They have also revealed that processes in the biogeochemical iron cycle spatially overlap and may compete with each other, and that oxidation and reduction of iron occur cyclically or simultaneously in many environments. This Review discusses these advances with particular focus on their environmental consequences, including the formation of greenhouse gases and the fate of nutrients and contaminants.

摘要

铁的生物地球化学循环对许多环境过程至关重要,如海洋生产力、碳储存、温室气体排放以及营养物质、有毒金属和类金属的命运。近年来,随着人们对决定铁在环境中形态、迁移性和反应性的生物和非生物反应复杂网络的认识不断加深,对铁循环中涉及的基本过程的了解也在加速。最近的研究深入了解了生物地球化学铁循环中的新过程,如微生物氨氧化和甲烷氧化与 Fe(III)还原偶联。它们还表明,生物地球化学铁循环中的过程在空间上重叠,并且可能相互竞争,并且在许多环境中,铁的氧化和还原是周期性或同时发生的。本综述讨论了这些进展,特别关注它们的环境后果,包括温室气体的形成以及营养物质和污染物的命运。

相似文献

[1]
An evolving view on biogeochemical cycling of iron.

Nat Rev Microbiol. 2021-6

[2]
Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications.

Sci Total Environ. 2024-11-15

[3]
The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle.

Nat Rev Microbiol. 2014-10-20

[4]
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.

Appl Environ Microbiol. 2018-1-2

[5]
Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

Photochem Photobiol Sci. 2007-3

[6]
The integral role of iron in ocean biogeochemistry.

Nature. 2017-3-1

[7]
Anaerobic microbial manganese oxidation and reduction: A critical review.

Sci Total Environ. 2022-5-20

[8]
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

Environ Sci Technol. 2014-12-9

[9]
Iron isotopic fractionation driven by low-temperature biogeochemical processes.

Chemosphere. 2023-3

[10]
Interactive effects of ozone depletion and climate change on biogeochemical cycles.

Photochem Photobiol Sci. 2003-1

引用本文的文献

[1]
Microbial iron oxide respiration coupled to sulfide oxidation.

Nature. 2025-8-27

[2]
Oxic microbial ferrihydrite reduction rates of Shewanella oneidensis and the potential for Fe mobilization in oxic sediments.

Sci Rep. 2025-8-26

[3]
Genetic isolation and metabolic complexity of an Antarctic subglacial microbiome.

Nat Commun. 2025-8-18

[4]
Tools to study microbial iron homeostasis and oxidative stress: current techniques and methodological gaps.

Front Mol Biosci. 2025-7-30

[5]
Metal-driven anaerobic oxidation of methane and the Sturtian deglaciation.

Nat Commun. 2025-8-6

[6]
Iron is an important influence of volcanic ash input on the evolution of deep-sea ecosystems.

Microbiol Spectr. 2025-8-1

[7]
Genome of , a marine photoferrotroph.

Microbiol Resour Announc. 2025-8-14

[8]
Phenolic Iron Complexes Protect Glacier Ice Algae (Zygnematophyceae) Against Excessive UV and VIS Irradiation.

Environ Microbiol Rep. 2025-8

[9]
Sulfur microenvironments as hotspots for biogenic pyrite formation.

Sci Rep. 2025-6-20

[10]
Sensitive, selective, and pretreatment-free detection of ferric ions in different solvents based on organic-soluble carbon dots.

Nanoscale Adv. 2025-6-3

本文引用的文献

[1]
Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw.

Nat Commun. 2020-12-10

[2]
Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction.

Environ Sci Technol. 2020-8-11

[3]
Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.

J Bacteriol. 2020-9-23

[4]
Iron-mediated organic matter decomposition in humid soils can counteract protection.

Nat Commun. 2020-5-7

[5]
Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of Fe-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam).

Environ Sci Technol. 2020-3-11

[6]
AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.

Environ Sci Technol. 2020-3-11

[7]
Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of Iron Mats at Marine Hydrothermal Vents.

mSystems. 2020-2-18

[8]
Influence of Physical Perturbation on Fe(II) Supply in Coastal Marine Sediments.

Environ Sci Technol. 2020-2-27

[9]
Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen.

Proc Natl Acad Sci U S A. 2020-2-3

[10]
Photochemistry of iron in aquatic environments.

Environ Sci Process Impacts. 2020-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索